Introduction
(General Description)
The EC5420A is a 30mA output current rail-to-rail quad channels operational amplifier with wide supply range from 4.5V to 18V while consumes only 750uA per channel. It provides 0.5V beyond the supply rails of common mode input range and capability of rail-to-rail output swing as well. This enables the amplifier to offer maximum dynamic range at any supply voltage among many applications. A 8MHz gain bandwidth product allows EC5420A to perform more stable than other devices in Internet applications.

With features of 20V/μs high slew rate and 200ns of fast settling time, as well as 30mA (sink and source) of high output driving capability, the EC5420A is ideal for the requirements of flat panel Thin Film Transistor Liquid Crystal Displays (TFT-LCD) panel reference buffers application. Due to insensitive to power supply variation, EC5420A offers flexibility of use in multitude of applications such as battery power, portable devices and anywhere low power consumption is concerned. With standard operational amplifier pin assignment, the EC5420A is offered in space saving 14-Pin TSSOP package and specified over the -20°C to +85°C temperature range.

Features
- Wide supply voltage range 4.5V ~ 18V
- Input range 500mV beyond the rails
- Unity-gain stable
- Rail-to-rail output swing
- High slew rate 20V/μs
- GBWP 8 MHz
- 12 MHz -3dB Bandwidth
- Ultra-small Package TSSOP-14

Applications
- TFT-LCD Reference Driver
- Touch-Screen Display
- Wireless LANs
- Personal Communication Devices
- Direct Access Arrangement
- Personal Digital Assistant (PDA)
- Active Filter
- Sampling ADC Amplifier
- ADC/DAC Buffer
- Electronic Notebook
- Office Automation

PIN ASSIGNMENT
Absolute maximum ratings (TA = 25 °C)

Values beyond absolute maximum ratings may cause permanent damage to the device. These are stress ratings only; functional device operation is not implied. Exposure to AMR conditions for extended periods may affect device reliability.

- Supply Voltage between V_{S-} and V_{S+} +18V
- Input Voltage V_{S-}-0.5V, V_{S+}+0.5V
- Maximum Continuous Output Current 30mA
- Maximum Die Temperature +125°C
- Storage Temperature -65°C to +150°C
- Operating Temperature -20°C to +85°C
- Lead Temperature 260°C
- ESD Voltage 2KV

Important Note:
All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>TOP MARK</th>
<th>PACKAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC5420AI-F</td>
<td>EC5420A-F</td>
<td>Lead free 14-pin TSSOP</td>
</tr>
<tr>
<td>EC5420AI-G</td>
<td>EC5420A-G</td>
<td>Green mode TSSOP-14</td>
</tr>
<tr>
<td>EC5420AI-HG</td>
<td>5420A-HG</td>
<td>Green mode TSSOP-14 (Exposed Pad)</td>
</tr>
</tbody>
</table>
Electrical Characteristics

(Typical Performance Characteristics)

\(V_{S+} = +5V, V_{S-} = -5V, R_L = 10k\Omega \text{ and } C_L = 10pF \text{ to } 0V, \text{ } T_A = 25^\circ C \text{ unless otherwise specified.}*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{os})</td>
<td>Input Offset Voltage</td>
<td>(V_{out} = 0V)</td>
<td>2</td>
<td>12</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>(TCV_{os})</td>
<td>Average Offset Voltage Drift</td>
<td>[1]</td>
<td>5</td>
<td></td>
<td></td>
<td>(\mu V/^\circ C)</td>
</tr>
<tr>
<td>(I_b)</td>
<td>Input Bias Current</td>
<td>(V_{out} = 0V)</td>
<td>2</td>
<td>50</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>(R_I)</td>
<td>Input Impedance</td>
<td>(V_{CM} = 0V)</td>
<td>1</td>
<td></td>
<td></td>
<td>G\Omega</td>
</tr>
<tr>
<td>(C_I)</td>
<td>Input Capacitance</td>
<td>(V_{CM} = 0V)</td>
<td>1.35</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(CMIR)</td>
<td>Common-Mode Input Range</td>
<td>(-0.5) to (+5.5) V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CMRR)</td>
<td>Common-Mode Rejection Ratio</td>
<td>(V_{IN}) from (-0.5V) to (+5.5V)</td>
<td>50</td>
<td>70</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(A_{VOL})</td>
<td>Open-Loop Gain</td>
<td>(0.5V \leq V_{OUT} \leq 4.5V)</td>
<td>75</td>
<td>90</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output Swing Low</td>
<td>(I_L = -5mA)</td>
<td>-4.92</td>
<td>-4.85</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output Swing High</td>
<td>(I_L = 5mA)</td>
<td>4.85</td>
<td>4.92</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{sc})</td>
<td>Short Circuit Current</td>
<td>(I_{L}=5mA)</td>
<td>±150</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{out})</td>
<td>Output Current</td>
<td>(I_{L}=5mA)</td>
<td>±30</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>(V_S) is moved from (-2.25V) to (+7.75V)</td>
<td>60</td>
<td>80</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(I_s)</td>
<td>Supply Current (Per Amplifier)</td>
<td>No Load</td>
<td>750</td>
<td>1000</td>
<td></td>
<td>(\mu A)</td>
</tr>
</tbody>
</table>

Dynamic Performance

- Slew Rate \([2]\): \(-4.0V \leq V_{OUT} \leq 4.0V, 20\% \text{ to } 80\%\)

 | SR | Slew Rate \([2]\) | \(-4.0V \leq V_{OUT} \leq 4.0V, 20\% \text{ to } 80\%\) | 13 | 20 | V/\mu s |

- Settling to \(+0.1\% \text{ (AV} = +1\) | \(V_{AV} = 2V\) Step | 200 | ns |

- -3dB Bandwidth | \(R_L = 10k\Omega, C_L = 10pF\) | 12 | MHz |

- Gain-Bandwidth Product | \(R_L = 10k\Omega, C_L = 10pF\) | 8 | MHz |

- Phase Margin | \(RL = 10k\Omega, CL = 10pF\) | 50 | Degrees |

- Channel Separation | \(f = 5MHz\) | 75 | dB |

1. Measured over operating temperature range
2. Slew rate is measured on rising and falling edges
Typical Performance Characteristics

Figure (a) Input Offset Voltage Distribution

Figure (b) Rail to Rail Capability

Figure (c) Input Beyond the Rails Signal

Figure (d) Large Signal Transient Response

Figure (e) Large Signal Transient Response
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers

Figure (f) Open Loop Gain & Phase vs. Frequency

Figure (g) Frequency Response for Various C_L

$R_L = 10K \Omega$
$Av = 1$

Figure (h) Frequency Response for Various R_L

$C_L = 10 \text{ pF}$
$Av = 1$
Applications Information

Product Description
The EC5420A rail-to-rail quad channels amplifier is built on an advanced high voltage CMOS process. It’s beyond rails input capability and full swing of output range made itself an ideal amplifier for use in a wide range of general-purpose applications. The features of 20V/µS high slew rate, fast settling time, 8MHz of GBWP as well as high output driving capability have proven the EC5420A a good voltage reference buffer for TFT-LCD for applications. High phase margin make the EC5420A ideal for Connected in voltage follower mode for high drive applications.

Supply Voltage, Input Range and Output Swing
The EC5420A can be operated with a single nominal wide supply voltage ranging from 4.5V to 18V with stable performance over operating temperatures of -20 °C to +85 °C.
With 500mV greater than rail-to-rail input common mode voltage range and 80dB of Common Mode Rejection Ratio, the EC5420A allows a wide range sensing among many applications without having any concerns over exceeding the range and no compromise in accuracy. The output swings of the EC5420A typically extend to within 80mV of positive and negative supply rails with load currents of 5mA. The output voltage swing can be even closer to the supply rails by merely decreasing the load current. Figure 1 shows the input and output waveforms for the device in the unity-gain configuration. The amplifier is operated under ±5V supply with a 10k load connected to GND. The input is a 10Vp-p sinusoid. An approximately 9.985 Vp-p of output voltage swing can be easily achieved.

![Figure 1. Operation with Rail-to-Rail Input and Output](image)

Output Short Circuit Current Limit
A +/-150mA short circuit current will be limited by the EC5420A if the output is directly shorted to the positive or the negative supply. For an indefinitely output short circuit, the power dissipation could easily increase such that the device may be damaged. The internal metal interconnections are well designed to prevent the output continuous current from exceeding +/-30 mA such that the maximum reliability can be well maintained.
Output Phase Reversal
The EC5420A is designed to prevent its output from being phase reversal as long as the input voltage is limited from $V_{S-} - 0.5V$ to $V_{S+} + 0.5V$. Figure 2 shows a photo of the device output with its input voltage driven beyond the supply rails. Although the phase of the device's output will not be reversed, the input's over-voltage should be avoided. An improper input voltage exceeds supply range by more than 0.6V may result in an over stress damage.

![Figure 2. Operation with Beyond-the Rails Input](image)

Power Dissipation
The EC5420A is designed for maximum output current capability. Even though momentary output shorted to ground causes little damage to the device.

For the high drive amplifier EC5420A, it is possible to exceed the 'absolute-maximum junction temperature' under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for the application to determine if load conditions need to be modified for the amplifier to remain in the safe operating area. The maximum power dissipation allowed in a package is determined according to:

$$P_{D_{\text{max}}} = \frac{T_{J_{\text{max}}} - T_{A_{\text{max}}}}{\Theta_J}$$

Where:
- $T_{J_{\text{max}}}$ = Maximum Junction Temperature
- $T_{A_{\text{max}}}$ = Maximum Ambient Temperature
- Θ_J = Thermal Resistance of the Package
- $P_{D_{\text{max}}}$ = Maximum Power Dissipation in the Package.

The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the loads, or:

$$P_{D_{\text{max}}} = I_S * I_{\text{Smax}} + (V_{S+} - V_O) * I_L$$

When sourcing, and

$$P_{D_{\text{max}}} = I_S * I_{\text{Smax}} + (V_O - V_{S-}) * I_L$$

When sinking.
Where:

\[i = 1 \text{ to } 4 \]

\[V_S = \text{Total Supply Voltage} \]

\[I_{\text{Smax}} = \text{Maximum Supply Current Per Amplifier} \]

\[V_O = \text{Maximum Output Voltage of the Application} \]

\[I_L = \text{Load current} \]

\[R_L = \text{Load Resistance} = (V_{S+} - V_O)/I_L = (V_O - V_{S-})/I_L \]

A calculation for \(R_L \) to prevent device from overheat can be easily solved by setting the two \(P_{\text{Dmax}} \) equations equal to each other.

<table>
<thead>
<tr>
<th>PIN Count</th>
<th>(\Theta_j a) ((^\circ C/W))</th>
<th>(\Theta_j c) ((^\circ C/W))</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSSOP14</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>TSSOP14</td>
<td>60</td>
<td>16</td>
</tr>
</tbody>
</table>

Driving Capacitive Loads

The EC5420A is designed to drive a wide range of capacitive loads. In addition, the output current handling capability of the device allows for good slewing characteristics even with large capacitive loads. The combination of these features make the EC5420A ideally for applications such as TFT LCD panel buffers, ADC input amplifiers, etc.

As load capacitance increases, however, the -3dB bandwidth of the device will decrease and the peaking increase. The amplifiers drive 10pF loads in parallel with 10 k\(\Omega \) with just 1.5dB of peaking, and 100pF with 6.4dB of peaking. If less peaking is desired in these applications, a small series resistor (usually between 5 \(\Omega \) and 50 \(\Omega \)) can be placed in series with the output. However, this will obviously reduce the gain slightly. Another method of reducing peaking is to add a "snubber" circuit at the output. A snubber is a shunt load consisting of a resistor in series with a capacitor. Values of 150 \(\Omega \) and 10nF are typical. The advantage of a snubber is that it improves the settling and overshooting performance while does not draw any DC load current or reduce the gain.
Power Supply Bypassing and Printed Circuit Board Layout

With high phase margin, the EC5420A performs stable gain at high frequency. Like any high-frequency device, good layout of the printed circuit board usually comes with optimum performance. Ground plane construction is highly recommended, lead lengths should be as short as possible and the power supply pins must be well bypassed to reduce the risk of oscillation. For normal single supply operation, where the V_{S-} pin is connected to ground, a $0.1 \, \mu F$ ceramic capacitor should be placed from V_{S+} pin to V_{S-} pin as a bypassing capacitor. A $4.7 \, \mu F$ tantalum capacitor should then be connected in parallel, placed in the region of the amplifier. One $4.7 \, \mu F$ capacitor may be used for multiple devices. This same capacitor combination should be placed at each supply pin to ground if split supplies are to be used.

Layout arrangement

![Lead Position Overlay for TSSOP-14 (millimeters)](image-url)
Outline Dimensions (Dimensions shown in millimeters)

TSSOP (Thin-Shrink Small Outline Package)