

General Description

The EC25C32 is an industrial standard electrically erasable programmable read only memory (EEPROM) Product that utilizes standard Serial Peripheral Interface (SPI) for communications. The EC25C32 contains a memory array of 32K bits (4,096x 8), which is organized in 32 bytes per page.

This EEPROM operates in a wide voltage range from 1.7V to 5.5V, which fits most application. The device provides low-power operations and low standby current. The product is offered in Lead-free, RoHS, halogen free or Green package. The available package types are 8-pin SOP, TSSOP and UDFN.

The functionalities of the EC25C32 are optimized most applications, such as consumer electronics, wireless, telecommunication, industrial, medical ,instrumentation, commercial and others, where low-power and low-voltage are vital. This product has a compatible SPI interface: Chip-Select (CS), Serial Data In (SI), Serial Data Out (SO) and Serial Clock (SCK) for high-speed communication. Furthermore, a Hold feature via HOLD pin allows the device entering into a suspended state whenever necessary and resuming the communication without re-initializing the serial sequence. A Status Register facilitates a flexible write protection mechanism and device Status monitoring.

In order to refrain the state machine from entering into a Wrong state during power-up sequence or a power toggle off-on condition, a power on reset circuit is implemented. During power-up, the device does not respond to any instructions until the supply voltage (VCC)has reached an acceptable stable level above the reset threshold voltage. Once VCC passes the power on reset threshold, the device is reset and enters into Standby mode. This should also avoid any inadvertent Write operations during power-up stage. During powerdown process, the device will enter into standby mode, once VCC drops below the power on reset threshold voltage. In addition, the device will be in standby mode after receiving the Stop command, provided that no internal write operation is in progress. Nevertheless, it is illegal to send a command unless the VCC is within its

Features

•Serial Peripheral Interface (SPI) Compatible

—Supports Mode 0 (0,0) and Mode 3 (1,1)

•Wide-voltage Operation

--VCC = 1.7V to 5.5V

•Low power CMOS

Standby current: ≤1 μA (1.7V)
Operating current: ≤1 mA (1.7V)
Operating frequency: 20 MHz (5.5V)
Memory organization: 32Kb (4,096 x 8)
Byte and Page write (up to 32 bytes)

-Partial page write allowed

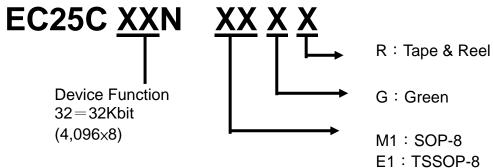
• Block Write Protection

Protect 1/4, 1/2, or Entire Array

• Self timed write cycle: 5 ms (max.)

Additional Write lockable Page (Identification page)

High-reliability

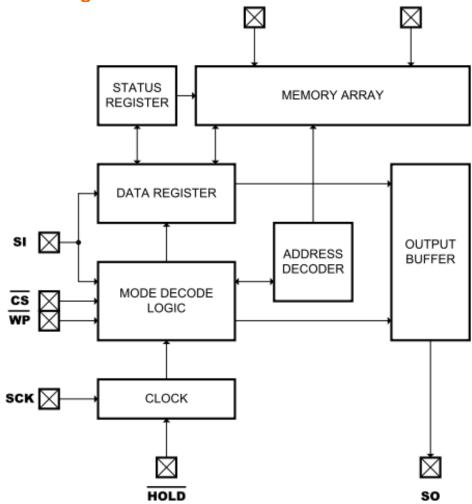

Endurance: 1 million cyclesData retention: 100 years

• Industrial temperature grade

Packages (8-pin): SOP, TSSOP and DFN

• Lead-free, RoHS, Halogen free, Green

Ordering Information & Marking Information



F2: DFN-8

Package type	Part Number	Marking	Marking Information
SOP-8	EC25C32NM1GR	25C32 LLLLL YYWWT	25C32: Part No LLLLL: the last five numbers of wafer lot number
TSSOP-8	EC25C32NE1GR	25C32 LLLLL YYWWT	YYWW: Date Code. T: Internal tracking Code
DFN-8	EC25C32NF2GR	5C32 LLLT	5C32: Part No LLL: the last three numbers of wafer lot number T: Internal tracking Code

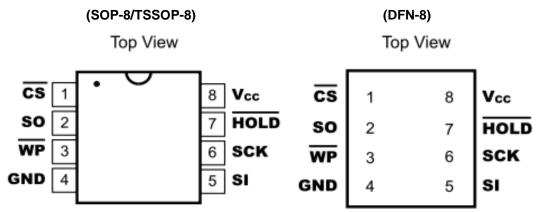
Functional Block Diagram

Serial Interface Description

Master: The device that provides a clock signal.

Slave: EC25C32.

Transmitter/Receiver: The EC25C32 has both data input (SI) and data output (SO).


MSB: MSB (Most Significant Bit) is the first bit being transmitted or received.

Op-Code: Operational instruction code typically sent to the EC25C32 is the first byte of information

transmitted after $\overline{\text{CS}}$ is Low. If the Op-Code is a valid instruction as listed in Table 3, then it will be decoded appropriately. It is prohibited to send an invalid Op-Code.

Pin Configuration

Pin Definition

Pin No.	Pin Name	I/O	Definition
1	CS	I	Chip Select
2	SO	0	Serial Data Output
3	WP	1	Write Protect Input
4	GND	-	Ground
5	SI	I	Serial Data Input
6	SCK	I	Serial Clock
7	HOLD	1	Hold function
8	VCC	-	Supply Voltage

Pin Descriptions

Chip Select (CS)

The CS pin is used to enable or disable the device. Upon power-up, CS must follow the supply voltage. When the device is ready for instruction input, this signal requires a High-to-Low transition. Once CS is stable at Low, the device is enabled. Then the master and slave can communicate among each other through SCK, SI, and SO pins. Upon completion of transmission, CS must be driven to High in order to stop the operation or start the internal write operation. And the device will enter into standby mode, unless an internal write operation is in progress. During this mode, SO becomes high impedance.

Serial Clock (SCK)

Under the SPI modes (0,0) and (1,1),this clock signal provides synchronization between the master and EC25C32. Typically, Op-Codes, addresses and data are latched from SI at the rising edge of SCK, while data from SO are clocked out at the falling edge of SCK.

Serial Data Input (SI)

Data Input pin.

Serial Data Output(SO)

Data output pin.

Write Protect (WP)

This active Low input signal is utilized to initiate Hardware Write Protection mode. This mode prevents the Block Protection bits and the WPEN bit in the Status Register from being modified. To activate the Hardware Write Protection, WP must be Low simultaneously when WPEN is set to 1.

Hold (HOLD)

This feature is used to suspend the device in the middle of a serial sequence and temporarily ignore further communication on the bus (SI,SO,SCK). The HOLD signal transitions must occur only when SCK is Low and be held stable during SCK transitions. Connecting HOLD to High disables this feature. Figure. 8 shows Hold timing.

32Kbits SPI Serial EEPROM

Device Operation

Status Register

The Status Register accessible by the user consists of 8-bits data for write protection control and write status. It Hardware Write Protection is enabled or WEN is set to 0. If neither is true, it can be modified by a valid instruction.

Table 1: Status Register

Bit	Symbol	Name	Description
			When RDY = 0, device is ready for an instruction.
0	RDY	Ready	When RDY = 1, device is busy.
			As busy, device only accepts Read Status Register command.
			This represents the write protection status of the device.
		N/ % = 11	When WEN = 0, Status Register and entire array cannot be modified, regardless
1	WEN	Write Enable	the setting of WPEN,WP pin or block protection.
			Write Enable command (WREN) can be used to set WEN to 1.
			Upon power-up stage, WEN is reset to 0.
2	BP0	Block Protect Bit	Despite of the status on WPEN, WP or WEN, BP0 and BP1 configure any
3	BP1	Block Protect Bit	combinations of the four blocks being protected (Table2).
3	DFI	DIOCK PTOLECT DIL	They are non-volatile memory and programmed to 0 by factory.
4	Х	Don't Care	Values can be either 0 or 1, but are not retained. Mostly always 0, except during
5	Х	Don't Care	write operation.
6	Х	Don't Care	
			This bit can be utilized to enable Hardware Write Protection, together with
			WP pin. If enabled, Status Register becomes read-only. However, the memory
7	WPEN	Write Protect Enable	array is not protected by this mode. Hardware Write Protection requires the
			setting of WP = 0 and WPEN = 1. Otherwise, it is disabled.
			WPEN cannot be altered from 1 to 0 if WP is already set to Low. (Table 4 for
			write protection)

Note: During internal write cycles, bits 0 to 7 are temporarily 1's.

Table 2: Block Protection by BP0 and BP1

Level	Status Reg	ister Bits	Array Addresses Protected	
Ecver	BP1	BP0	Allay Addiesses Flotested	
0	0	0	None	
1 (1/4)	0	1	0C00h-0FFFh	
2 (1/2)	1	0	0800h-0FFFh	
3 (All)	1	1	0000h-0FFFh	

Op-Code Instructions

The operations of the EC25C32 are controlled by a set of instruction Op-Codes (Table3) that are clocked-in serially via SI pin. To initiate an instruction, the chip select(CS) must be Low. Subsequently, each Low-to-High transition of the clock (SCK) will latch a stable level from SI. After the 8-bit Op-Code, it may continue to latch-in an address and/or data output, data are latched out at the falling edge of SCK. All communications start with MSB first. Upon the transmission of the last bit but prior to any following Low-to-High transition on SCK, CS must be brought to High in order to end the transaction and start the operation. The device will enter into Standby Mode after the operation is completed. data from SI accordingly, or to output data from SO. During data output, data are latched out at the falling edge of SCK. All communications start with MSB first. Upon the transmission of the last bit but prior to any following Low-to-High transition on SCK, CS must be brought to High in order to end the transaction and start the operation. The device will enter into Standby Mode after the operation is completed.

Table3: Instruction Op-Codes[1,2,3]

Name	Op-Code	Operation	Address	Data (SI)	Data (SO)
WREN	0000 X110	Set Write Enable Latch	-	-	-
WRDI	0000 X100	Reset Write Enable Latch	-	-	-
RDSR	0000 X101	Read Status Register	-	-	D7-D0 -
WRSR	0000 X001	Write Status Register	-	D7-D0	-
READ	0000 X011	Read Data from Array	A15-A0	-	D7-D0,
WRITE	0000 X010	Write Data to Array	A15-A0	D7-D0,	-

Notes:

[1] X = Don't care bit. However, it is recommended to be "0".

[2]Some address bits may be don't care (Table 5).

[3] It is strongly recommended that an appropriate format of Op-Code must be entered. Otherwise, it maycause unexpected phenomenon to be occurred. Nevertheless, it is illegal to input invalid any Op-Code.

Write Enable

When VCC is initially applied ,the device powers up with both status register and entire array in a write-disabled state. Upon completion of Write Disable(WRDI),Write Status Register(WRSR) or Write Data to Array (WRITE), the device resets the WEN bit in the Status Register to 0. Prior to any data modification, a Write Enable (WREN) instruction is necessary to set WEN to 1 (Figure.2).

Write Disable

The device can be completely protected from modification by resetting WEN to 0 through the Write Disable (WRDI) instruction (Figure.3).

Read Status Register

The Read Status(RDSR) instruction reviews the status of Write Protect Enable, Block Protection setting (Table 2), Write Enable state and RDY status. RDSR is the only instruction accepted when a write cycle is under way. It is recommended that the status of Write Enable and RDY be checked, especially prior to an attempted modification of data. These 8 bits information can be repeatedly output on SO after the initial Op-Code (Figure.4)

Write Status Register

The Write Status Register(WRSR) instruction allows the user to choose a Block Protection setting and set or reset the WPENbit. The values of the other data bits incorporated into WRSR can be 0 or 1 and are not stored in the Status Register. WRSR will be ignored unless both following conditions are true: a) WEN=1, due to a prior WREN instruction; and b) Hardware Write Protection is not enabled(Table 4). Except for RDY status, the values in the Status Register remain unchanged until the moment when the write cycle is completed and the register is updated. Note that WPEN can be changed from 1 to 0 only if WP is already set High. Once completed, WEN is reset for complete chip write protection (Fig.5).

Read Data

This instruction includes an Op-Code and 16-bit address, then results the selected data to be shifted out from SO. Following the first data byte, additional sequential data can be output. If the data byte of the last address is initially output, then address will rollover to the first address in the array, and the output could loop indefinitely. At any time, a rising CS signal ceases the operation (Figure.6).

Write Data

Table 4: Write Protection

WPEN	WP	Hardware Write Protection	WEN	Inside Block	Outside Block	Status Register (WPEN, BP1, BP0)
0	Χ	Not Enabled	0	Read-only	Read-only	Read-only
0	Χ	Not Enabled	1	Read-only	Unprotected	Unprotected
1	0	Enabled	0	Read-only	Read-only	Read-only
1	0	Enabled	1	Read-only	Unprotected	Read-only
Х	1	Not Enabled	0	Read-only	Read-only	Read-only
Х	1	Not Enabled	1	Read-only	Unprotected	Unprotected

Note: X = Don't care bit.

Table 5: Address Key

Name	EC25C32
An	A11-A0
Don't Care Bits	A _{15~} A ₁₂

Diagrams

Figure 1. Synchronous Data Timing

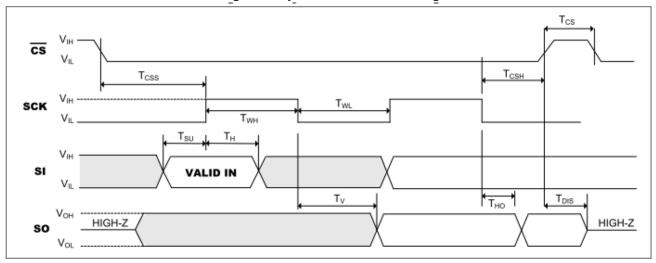


Figure 2. WREN Timing

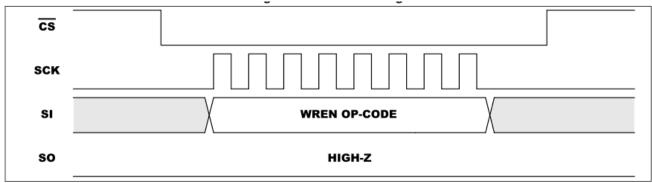
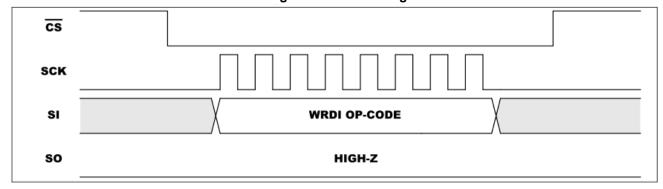



Figure 3. WRDI Timing

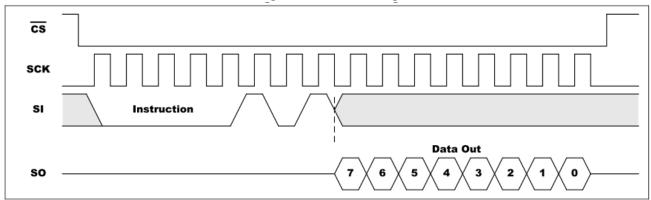


Figure 5. WRSR Timing

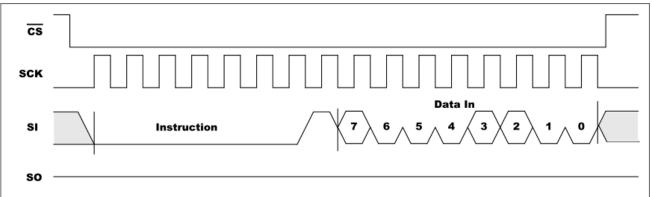
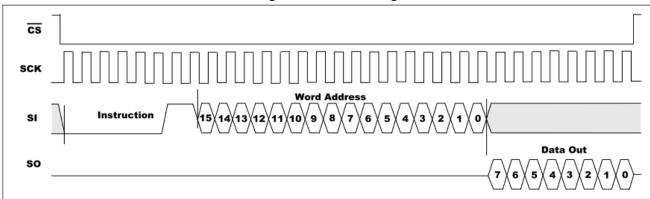



Figure 6. READ Timing

Figure 7. WRITE Timing

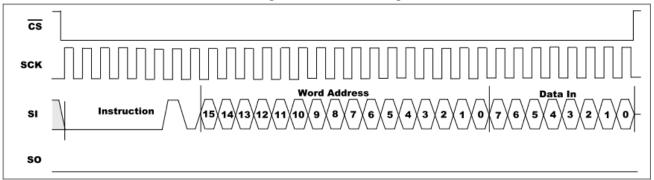
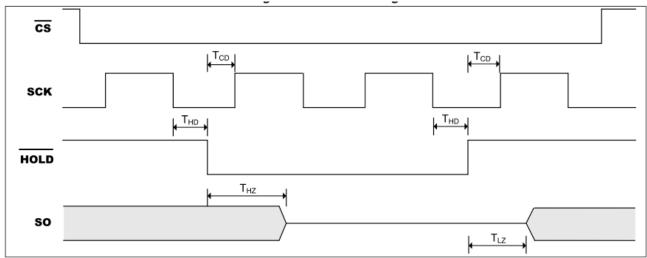



Figure 8. HOLD Timing

Electrical Characteristics

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	-0.5 to + 6.5	V
VP	Voltage on Any Pin	-0.5 to VCC + 0.5	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-65 to +150	°C
lout	Output Current	5	mA

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Range

Range	Ambient Temperature (TA)	Vcc		
Industrial	−40°C to +85°C	1.7V to 5.5V		

Capacitance

Symbol	Parameter ^[1,2]	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	pF
CI/O	Input / Output Capacitance	VI/O = 0V	8	pF

Note: (1) Tested initially and after any design or process changes that may affect these parameters and not 100% tested.

⁽²⁾ Test conditions: TA = 25°C, f = 1 MHz, VCC = 5.0V.

DC Electrical Characteristic

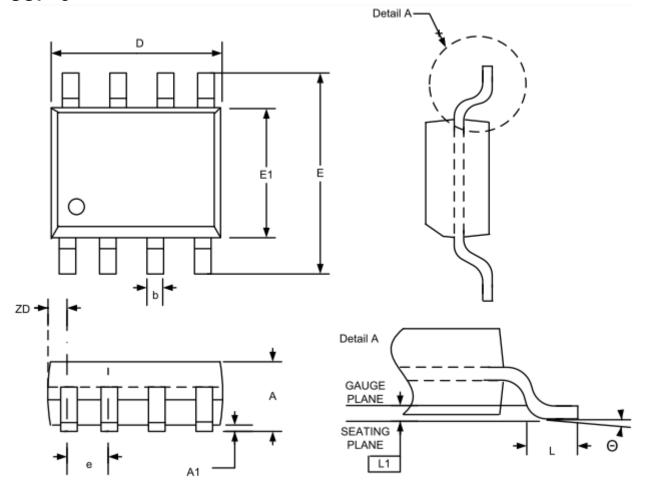
Industrial: TA = -40°C to +85°C, $VCC = 1.7V \sim 5.5V$

Symbol	Parameter	Vcc	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage			1.7	5.5	V
ViH	Input High Voltage			0.7* Vcc	Vcc+1	V
VIL	Input Low Voltage			-0.3	0.3* Vcc	V
lu	Input Leakage Current		Vin = 0V To Vcc	-2	2	μA
ILO	Output Leakage Current		Vout = 0V To Vcc, CS = Vcc	-2	2	μA
		1.7	Іон = -0.1mA	0.8*Vcc	_	V
Voн Output High	Output High Voltage	2.5	Iон = -0.4mA	0.8*Vcc	_	V
		5	Іон = -2 mA	0.8*Vcc	_	V
		1.7	loL = 0.15 mA	_	0.2	V
Vol	Output Low Voltage	2.5	loL = 1.5 mA	_	0.4	V
		5	IoL = 2 mA	_	0.4	V
		1.7	Write at 5 MHz, SO=Open	_	1	mA
I	Write Operating Current	2.5	Write at 10 MHz, SO=Open	_	2	mA
		5	Write at 20 MHz, SO=Open	_	3	mA
		1.7	VIN= Vcc or GND, CS = Vcc	_	1	μA
lsв	Standby Current	2.5	VIN= Vcc or GND, CS = Vcc	_	2	μA
		5	VIN= Vcc or GND, CS = Vcc	_	3	μA

AC Electrical Characteristic

Symbol	Parameter[1]	1.7V≤V	c<2.5V	2.5V≤Vcc<4.5V		4.5V≤Vcc≤5.5V		Unit
Oymboi		Min.	Max.	Min.	Max.	Min.	Max.	Oiiit
Fsck	SCK Clock Frequency	0	5	0	10	0	20	MHz
Trı	Input Rise Time	_	1	_	1	_	1	μs
T _{FI}	Input Fall Time	_	1	_	1	_	1	μs
Тwн	SCK High Time	80	_	40	_	20	_	ns
TwL	SCK Low Time	80	_	40	_	20	_	ns
Tcs	CS High Time	100	_	50	_	25	_	ns
Tcss	CS Setup Time	100	_	50	_	25	_	ns
Тсѕн	CS Hold Time	100	_	50	_	25	_	ns
Tsu	Data In Setup Time	20	_	10	_	5	_	ns
Тн	Data In Hold Time	20	_	10	_	5	_	ns
Thd	HOLD Setup Time	20	_	10	_	5	_	ns
Tcd	HOLD Hold Time	20	_	10	_	5	_	ns
Tv ^[2]	Output Valid	0	80	0	40	0	20	ns
Тно	Output Hold Time	0	_	0	_	0	_	ns
Tız	HOLDto Output Low Z	0	80	0	40	0	25	ns
Тнz	HOLDto Output High Z	_	80	_	40	_	40	ns
Tois	Output Disable Time	_	80	_	40	_	40	ns
Twc	Write Cycle Time	_	5	_	5	_	5	ms

Industrial: TA = -40°C to +85°C, Supply voltage = 1.7V to 5.5V


Notes: [1] The parameters are characterized but not 100% tested.

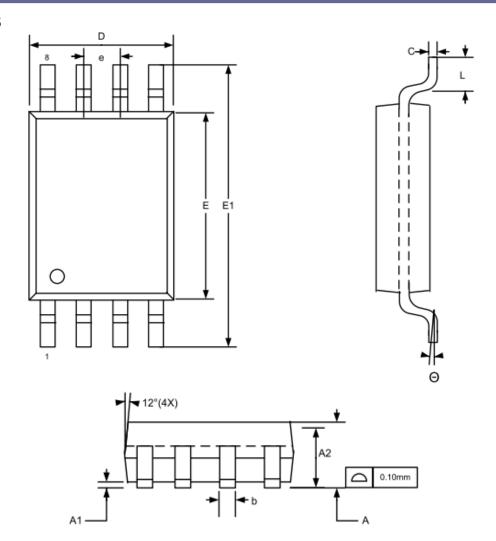
[2] CL = 30pF (typical)

Package Information

SOP -8

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.004		0.010	
b	0.33		0.51	0.013		0.020	
D	4.80		5.00	0.189		0.197	
E	5.80		6.20	0.228		0.244	
E1	3.80		4.00	0.150		0.157	
е	1.27 BSC.			0.050 BSC.			
L	0.38		1.27	0.015		0.050	
L1	0.25 BSC.			0.010 BSC.			
ZD	0.545 REF.			0.021 REF.			
Θ	0		8°	0		8°	

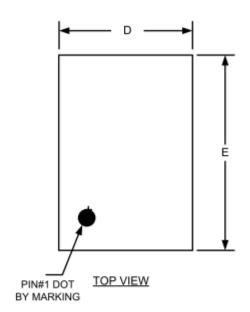
Note:

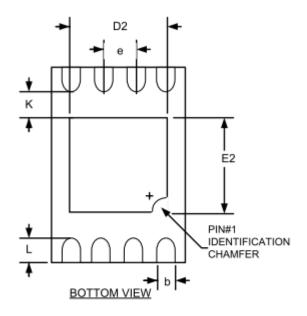

- 1. Controlling Dimension: MM
- 2. Dimension D and E1 do not include

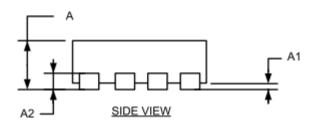
Mold protrusion

- 3. Dimension b does not include dambar protrusion/intrusion.
- 4. Refer to Jedec standard MS-012
- 5. Drawing is not to scale

TSSOP-8


SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.20			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	4.30	4.40	4.50	0.169	0.173	0.177	
E1	6.4 BSC			0.252 BSC			
е	0.65 BSC			0.026 BSC			
L	0.45	0.60	0.75	0.018	0.024	0.030	
Θ	0		8°	0		8°	


Note:


- 1. Controlling Dimension: MM
- 2. Dimension D and E do not include Mold protrusion
- 3. Dimension b does not include dambar protrusion/intrusion.
- 4. Refer to Jedec standard MO-153 AA
- 5. Drawing is not to scale
- 6. Package may have exposed tie bar

DFN-8

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0.00		0.05	0.000		0.002	
b	0.18	0.25	0.30	0.007	0.010	0.012	
A2	0.152 REF			0.006 REF			
D	2.00 BSC			0.079 BSC			
D2	1.25	1.40	1.50	0.049	0.055	0.059	
E	3.00 BSC			0.118 BSC			
E2	1.15	1.30	1.40	0.045	0.051	0.055	
е	0.50 BSC.			0.020 BSC.			
K	0.40			0.016			
Ĺ	0.20	0.30	0.40	0.008	0.012	0.016	

Note:

1. Controlling Dimension: MM