General Description

The EC3286 is a monolithic synchronous buck regulator. The device integrates two $90 \mathrm{~m} \Omega$ MOSFETs, and provides 3 A of continuous load current over a wide input voltage of 4.75 V to 32 V . Current mode control provides fast transient response and cycle-by-cycle current limit.
An adjustable soft-start prevents inrush current at turn-on, and in shutdown mode the supply current drops to $1 \mu \mathrm{~A}$. The EC3286 regulates the output voltage in automatic PSM/PWM mode operation, depending on the output current, for high efficiency operation over light to full load current.
This device, available in an SOP-8(Exposed PAD) package, provides a very compact solution with minimal external components.

Features

-3A Output Current
-Wide 4.75V to 32V Operating Input Range

- Integrated $90 \mathrm{~m} \Omega$ Power MOSFET Switches
- Output Adjustable from 0.923 V to 30 V
-Up to 93\% Efficiency
-Pulse Save Mode(PSM)/PWM Mode Operation
-Programmable Soft-Start
- Stable with Low ESR Ceramic Output Capacitors - Fixed 340KHz Frequency
-Cycle-by-Cycle Over Current Protection
- Input Under Voltage Lockout

Applications

-Distributed Power Systems

- Networking Systems
-FPGA, DSP, ASIC Power Supplies
- Green Electronics/ Appliances
- Notebook Computers

Package Types

Figure 1. Package Types of EC3286

Pin Configurations

Figure 2 Pin Configuration of EC3286(Top View)

Pin Description

Pin Number	Pin Name	Description
1	BS	High-Side Gate Drive Boost Input. BS supplies the drive for the high-side N-Channel MOSFET switch. Connect a $0.01 \mu \mathrm{~F}$ or greater capacitor from SW to BS to power the high side switch.
2	IN	Power Input. IN supplies the power to the IC, as well as the step-down converter switches. Drive IN with a 4.75 V to 32 V power source. Bypass IN to GND with a suitably large capacitor to eliminate noise on the input to the IC. See Input Capacitor.
3	SW	Power Switching Output. SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load. Note that a capacitor is required from SW to BS to power the high-side switch.
4	GND	Ground.
5	FB	Feedback Input. FB senses the output voltage to regulate that voltage. Drive FB with a resistive voltage divider from the output voltage. The feedback threshold is 0.923 V . See Setting the Output Voltage.
6	COMP	Compensation Node. COMP is used to compensate the regulation control loop. Connect a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required. See Compensation Components.
7	EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator, drive it low to turn it off. Pull up with $100 \mathrm{k} \Omega$ resistor for automatic startup.
8	SS	Soft-Start Control Input. SS controls the soft start period. Connect a capacitor from SS to GND to set the soft-start period. A $0.1 \mu \mathrm{~F}$ capacitor sets the soft-start period to 15 ms . To disable the soft-start feature, leave SS unconnected.

Ordering Information

Package Type
MH=SOP-8(Exposed PAD)

Part Number	Package	Marking	Marking Information
EC3286NNMHR	SOP-8L		
	(Exposed PAD)	EC3286	LLLLL is Lot Number YYWW is date code

Function Block

Figure 3 Function Block Diagram of EC3286

3A 32V Synchronous Rectified Step-Down Converter
 EC3286

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vin	-0.3 to 32	V
Switch Node Voltage	Vsw	30	V
Boost Voltage	$V_{B S}$	V sw -0.3 V to V sw+6V	V
Output Voltage	Vout	0.923 V to 30	V
All Other Pins		-0.3 V to +6V	V
Operating Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tste	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	TLead	260	${ }^{\circ} \mathrm{C}$
ESD (HBM)		2000	V
MSL		Level3	
Thermal Resistance-Junction to Ambient	$\mathrm{R}_{\text {өJA }}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance-Junction to Case	$\mathrm{R}_{\text {өлc }}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

3A 32V Synchronous Rectified Step-Down Converter
EC3286
$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Shutdown Supply Current		$\mathrm{VEN}=0 \mathrm{~V}$		1	3.0	$\mu \mathrm{A}$
Supply Current		$\begin{gathered} \text { VEN }=2.0 \mathrm{~V} ; \mathrm{VFB}= \\ 1.0 \mathrm{~V} \end{gathered}$		1.3	1.5	mA
Feedback Voltage	VFB	$4.75 \mathrm{~V} \leq \mathrm{VIN} \leq 23 \mathrm{~V}$	0.900	0.923	0.946	V
Feedback Overvoltage Threshold				1.1		V
Error Amplifier Voltage Gain *	AEA			400		V/V
Error Amplifier Transconductance	GEA	$\Delta \mathrm{IC}= \pm 10 \mu \mathrm{~A}$		800		$\mu \mathrm{A} / \mathrm{V}$
High-Side Switch On Resistance *	RDS(ON)1			90		$\mathrm{m} \Omega$
Low-Side Switch On Resistance *	RDS(ON)2			90		$m \Omega$
High-Side Switch Leakage Current		VEN = OV, VSW = OV			10	$\mu \mathrm{A}$
Upper Switch Current Limit		Minimum Duty Cycle	4.0	5.8		A
Lower Switch Current Limit		From Drain to Source		0.9		A
COMP to Current Sense Transconductance	GCS			4.8		AV
Oscillation Frequency	Fosc1			340		KHz
Short Circuit Oscillation Frequency	Fosc2	$\mathrm{VFB}=0 \mathrm{~V}$		100		KHz
Maximum Duty Cycle	DMAX	$\mathrm{VFB}=1.0 \mathrm{~V}$		90		\%
Minimum On Time *				220		ns
EN Shutdown Threshold Voltage		VEN Rising	1.1	1.5	2.0	V
EN Shutdown Threshold Voltage Hysteresis				210		mV
EN Lockout Threshold Voltage			2.2	2.5	2.7	V
EN Lockout Hysterisis				210		mV

Electrical Characteristics

$\mathrm{VIN}=12 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Input Under Voltage Lockout Threshold		Vin Rising	3.80	4.10	4.40	V
Input Under Voltage Lockout Threshold Hysteresis				210		mV
Soft-Start Current		Vss $=0 \mathrm{~V}$		6	$\mu \mathrm{~A}$	
Soft-Start Period		Css $=0.1 \mu \mathrm{~F}$		15	ms	
Thermal Shutdown *			160		${ }^{\circ} \mathrm{C}$	

Typical Performance Characteristics

$2 \mu \mathrm{~s} / \mathrm{div}$.
Figure 4. Steady State Test

Typical_Porfommanco Charactoricticg(Cont)

Figure 6. Startup through Enable

Figure 8. Shutdown through Enable

$2 \mathrm{~ms} /$ div.

Figure 7. Startup through Enable

Figure 9. Shutdown through Enable

Typical-Porformanco Chamactarictics(Cont)

$50 \mu \mathrm{~s} / \mathrm{div}$.
Figure 10. Load Transient Test

Figure 29 2. Sidijot Circuit Recovery

$20 \mu \mathrm{~s} / \mathrm{div}$.
Figure 11. Short Circuit Test

Typical Application Circuit

Fig13. EC3286 with 3.3 V Output, $22 \mu \mathrm{~F} / 6.3 \mathrm{~V}$ Ceramic Output Capacitor

3A 32V Synchronous Rectified Step-Down Converter
EC3286

Function Description

PWM Operation

The EC3286 utilizes DEM control to improve light load efficiency. Depending on the load current, the controller automatically operates in Diode Emulation Mode (DEM) or in Continuous Conduction Mode (CCM) with fixed frequency PWM.
At light load condition, the EC3286 automatically operates in diode emulation mode to reduce switching frequency to improve efficiency. As the output current decreases from heavy load condition, the inductor current decreases, and eventually the inductor valley current decreases to zero, which is the boundary between continuous conduction mode and discontinuous conduction mode. By emulating the behavior of diodes, the low side MOSFET allows only partial negative current to flow when the inductor freewheeling current becomes negative. As the load current further decreases, it takes longer and longer to discharge the output capacitor to the level that allows the next UGATE on-time to begin. When the output current increases from light load to heavy load, the switching frequency increases to the CCM value as the inductor current reaches the continuous conduction condition. The controller will then operate in continuous conduction mode with 340 kHz fixed PWM switching frequency.

Setting the Output Voltage

The output voltage is set using a resistive voltage divider from the output voltage to FB pin. The voltage divider divides the output voltage down to the feedback voltage by the ratio:

$$
V_{F B}=V_{\text {OUT }} \frac{R 2}{R 1+R 2}
$$

Where $V_{F B}$ is the feedback voltage and VOUT is the output voltage. Thus the output voltage is:

$$
V_{\text {OUT }}=0.923 \times \frac{R 1+R 2}{R 2}
$$

R2 can be as high as $100 \mathrm{k} \Omega$, but a typical value is $10 \mathrm{k} \Omega$. Using the typical value for $\mathrm{R} 2, \mathrm{R} 1$ is determined by:

$$
\mathrm{R} 1=10.83 \times\left(\mathrm{V}_{\text {OUT }}-0.923\right)(\mathrm{k} \Omega)
$$

For example, for a 3.3 V output voltage, R 2 is $10 \mathrm{k} \Omega$, and R 1 is $26.1 \mathrm{k} \Omega$.

Inductor

The inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor will result in less ripple current that will result in lower output ripple voltage. However ,the larger value inductor will have a larger physical size, higher series resistance, and/or lower saturation current. A good rule for determining the inductance to use is to allow the peak-to-peak ripple current in the inductor to be approximately 30% of the maximum switch current limit. Also, make sure that the peak inductor current is below the maximum switch current limit. The inductance value can be calculated by:

$$
\mathrm{L}=\frac{\mathrm{V}_{\text {OUT }}}{f_{\mathrm{S}} \times \Delta \mathrm{I}_{\mathrm{L}}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
$$

Where Vout is the output voltage, VIN is the input voltage, f_{s} is the switching frequency, and $\Delta \mathrm{IL}$ is the peak-to-peak inductor ripple current.
Choose an inductor that will not saturate under the maximum inductor peak current. The peak inductor current can be calculated by:

$$
\mathrm{I}_{\mathrm{LP}}=\mathrm{I}_{\mathrm{LOAD}}+\frac{\mathrm{V}_{\mathrm{OUT}}}{2 \times \mathrm{f}_{\mathrm{S}} \times \mathrm{L}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
$$

Where I load is the load current.
The choice of which style inductor to use mainly depends on the price vs. size requirements and any EMI requirements.

3A 32V Synchronous Rectified Step-Down Converter
EC3286

Optional Schottky Diode

During the transition between high-side switch and low-side switch, the body diode of the low-side power MOSFET conducts the inductor current. The forward voltage of this body diode is high. An optional Schottky diode may be paralleled between the SW pin and GND pin to improve overall efficiency. Table 1 lists example Schottky diodes and their Manufacturers.

Part Number	Voltage/Current	Vendor
B130	$30 \mathrm{~V}, 1 \mathrm{~A}$	Diodes, Inc.
SK13	$30 \mathrm{~V}, 1 \mathrm{~A}$	Diodes, Inc.
MBRS130	$30 \mathrm{~V}, 1 \mathrm{~A}$	International Rectifier

Input Capacitor

The input current to the step-down converter is discontinuous, therefore a capacitor is required to supply the AC current to the step-down converter while maintaining the DC input voltage. Use low ESR capacitors for the best performance. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors may also suffice. Choose X5R or X7R dielectrics when using ceramic capacitors. Since the input capacitor (C1) absorbs the input switching
current it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated by:

The worst-case condition occurs at $\mathrm{VIN}=2 \mathrm{~V}$ out, where $\mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\text {LOAD/2 }}$. For simplification, choose the input capacitor whose RMS current rating greater than half of the maximum load current. The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, a small, high quality ceramic capacitor, i.e. $0.1 \mu \mathrm{~F}$, should be placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at input. The input voltage ripple for low ESR capacitors can be estimated by:

$$
\Delta \mathrm{V}_{\mathrm{IN}}=\frac{\mathrm{L}_{\mathrm{OAD}}}{\mathrm{C} 1 \times \mathrm{f}_{\mathrm{S}}} \times \frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\text {IN }}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\text {IN }}}\right)
$$

Where C 1 is the input capacitance value.

Output Capacitor

The output capaciter is requifed to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytiof cadacitors dfe recommended. Low ESR capacitors are preferred to keep
the output voltage ripple low. The output voltage ripple can be estimated by:

Where $C 2$ is the output capacitance value and RESR is the Equivalent series resistance (ESR) value of the output capacitor.
In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated by:

$$
\Delta V_{\text {OUT }}=\frac{V_{\text {OUT }}}{8 \times f_{-}^{2} \times 1 \times C 2} \times\left(1-\frac{V_{\text {OUT }}}{V_{\text {IM }}}\right)
$$

In the case ${ }^{1 / 0 b f}$ tantalking or relectrolytic capacitors, the ESR dominates the impedance at the switching freguency. For/simplificãtion, the output ripple can be approximated to:

The characteristics of the output capacitor also affect the stability of the regulation system. The EC3286 can be optimized for a wide range of capacitance and ESR values

Compensation Components

EC3286 employs current mode control for easy compensation and fast transient response. The system stability and transient response are controlled through the COMP pin. COMP pin is the output of the internal transconductance error amplifier. A series capacitor-resistor compination R sets a GPole-zero combibipation to control the characteristics of the control system. The DC gatin of the voltage feedback 100 p/s given by:

Where Avea is the error amplifier voltage gain; $G_{c s}$ is the current sense transconductance and Rload is the load resistor value.
The system hase two poles of importance. One is due to the compensation capacitor (C3) and the oufput $=$ resiston of the error amplifier, and the other is due to the output capacitor
and the load resistor.VEkese poles are located at:

$$
\mathrm{f}_{\mathrm{P} 2}=\frac{1}{2 \pi \times \mathrm{C} 2 \times \mathrm{R}_{\mathrm{LOAD}}}
$$

Where $G_{E A}$ is the error amplifier transconductance.
The system has one zero of importance, due to the compensation capacitor (C3) and the compensation resistor (R3). This zero is located at:

$$
f_{Z 1}=\frac{1}{2 \pi \times C 3 \times R 3}
$$

The system may have another zero of importance, if the output capacitor has a large capacitance and/or a high ESR value. The zero, due to the ESR and capacitance of the output capacitor, is located at:

$$
f_{E S R}=\frac{1}{2 \pi \times C 2 \times R_{E S R}}
$$

In this case (as shown in Figure 14), a third pole set by the compensation capacitor (C6) and the compensation resistor (R 3) is used to compensate the effect of the ESR zero on the loop gain. This pole is located at:

$$
f_{P 3}=\frac{1}{2 \pi \times C 6 \times R 3}
$$

The goal of compensation design is to shape the converter transfer function to get a desired loop gain. The system crossover frequency where the feedback loop has the unity gain is important. Lower crossover frequencies result in Slower line and load transient responses, while higher crossover frequencies could cause system instability. A good
rule of thumb is to set the crossover frequency below one-tenth of the switching frequency. To optimize the compensation components, the following procedure can be used.

1. Choose the compensation resistor (R3) to set the desired crossover frequency.

Determine the R3 value by the following equation:

$$
R 3=\frac{2 \pi \times C 2 \times f_{C}}{G_{E A} \times G_{C S}} \times \frac{V_{O U T}}{V_{F B}}<\frac{2 \pi \times C 2 \times 0.1 \times f_{S}}{G_{E A} \times G_{C S}} \times \frac{V_{O U T}}{V_{F B}}
$$

Where f_{c} is the desired crossover frequency which is typically below one tenth of the switching frequency. 2. Choose the compensation capacitor (C3) to achieve the desired phase margin. For applications with typical inductor values, setting the compensation zero, fZ1, below one-forth of
the crossover frequency provides sufficient phase margin. Determine the C3 value by the following equation:

3A 32V Synchronous Rectified Step-Down Converter
EC3286

$$
\mathrm{C} 3>\frac{4}{2 \pi \times \mathrm{R} 3 \times \mathrm{f}_{\mathrm{C}}}
$$

Where R3 is the compensation resistor.
3. Determine if the second compensation capacitor (C6) is required. It is required if the ESR zero of the output capacitor is located at less than half of the switching frequency, or the following relationship is valid:

$$
\frac{1}{2 \pi \times C 2 \times R_{E S R}}<\frac{f_{S}}{2}
$$

If this is the case, then add the second compensation capacitor (C6) to set the pole fP3 at the location of the ESR zero. Determine the C6 value by the equation:

$$
\mathrm{C} 6=\frac{\mathrm{C} 2 \times \mathrm{R}_{\mathrm{ESR}}}{\mathrm{R} 3}
$$

External Bootstrap Diode

An external bootstrap diode may enhance the efficiency of the regulator, the applicable conditions of external BST diode are: Vout $=5 \mathrm{~V}$ or 3.3 V ; and
Duty cycle is high:

$$
D=\frac{V_{\text {OUT }}}{V_{\text {IN }}}>65 \%
$$

In these cases, an external BST diode is recommended from the output of the voltage regulator to BST pin, as shown in Fig. 14

Figure14.Add Optional External Bootstrap Diode to Enhance Efficiency
The recommended external BST diode is IN4148, and the BST cap is $0.1 \sim 1 \mu \mathrm{~F}$.

Package Information

SOP-8(Exposed PAD) Package Outline Dimensions

	Dimensions In Millimeters		Dimensions In Inches				
	Min	Max	Min	Max			
A	1.350	1.750	0.053	0.069			
A1	0.050	0.150	0.004	0.010			
A2	1.350	1.550	0.053	0.061			
b	0.330	0.510	0.013	0.020			
c	0.170	0.250	0.006	0.010			
D	4.700	5.100	0.185	0.200			
D1	3.202	3.402	0.126	0.134			
E	3.800	4.000	0.150	0.157			
E1	5.800	6.200	0.228	0.244			
E2	2.313	2.513	0.091	0.099			
e	$1.270(B S C)$						$0.050(B S C)$
L	0.400	1.270	0.016	0.050			
θ	0°	8°	$0{ }^{\circ}$	8°			

