EC87XX

General Description

EC87XX series is designed for power sensitive applications. It includes a precision and high voltage input stage, an ultra-low-power bias current branch, and results in a ultra-low-power and low-dropout linear regulator.

The EC87XX operates from an input voltage of $V_{OUT}+1V$ to 40V, consumes only 2.6 μ A of quiescent current, and offers 1% initial accuracy and SoftStart function. At power startup, the output voltage overshoot is less than 100mV.

The EC87XX regulators is available in standard SOT89-3L, and SOT23-3L packages.

Features

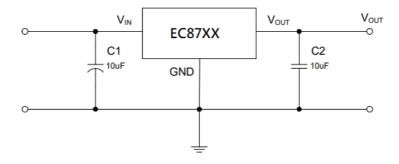
Input voltage: 4.5V~40V
 Output voltage: 1.8V~5.7V
 Output accuracy: < ± 1%
 Output current: 100mA (Typ.)

■ PSRR: 60dB @ 100Hz

Quiescent current: $4.2\mu A$ @ VIN = 12V(Typ.)

■ ESD HBM: 8KV

Recommend capacitor: 10μF

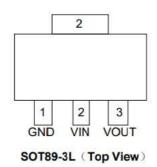

■ No overshoot from short circuit recovery

■ UVLO at 1.8V

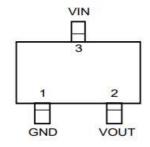
Applications

- Battery-powered Smoke sensor
- Smoke sensor
- Microcontrollers
- Household appliances and instruments

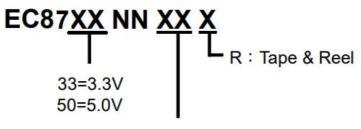
TYPICAL APPLICATION CIRCUIT


In plugging in application, $C_{\rm IN}$ is recommended to use 10uF electrolytic capacitor or 10uF MLCC with 2 ohm serial resistors to prevent large input voltage spike when plugging in. See APPLICATION INFORMATION for more information.

PIN ASSIGNMENT


SOT89-3L

SOT23-3L


SOT23-3L (Top View)

PIN DESCRIPTION

SYMBOL	1/0	DESCRIPTTION
GND	Ground	Ground
VIN	Power	Input
VOUT	0	Output

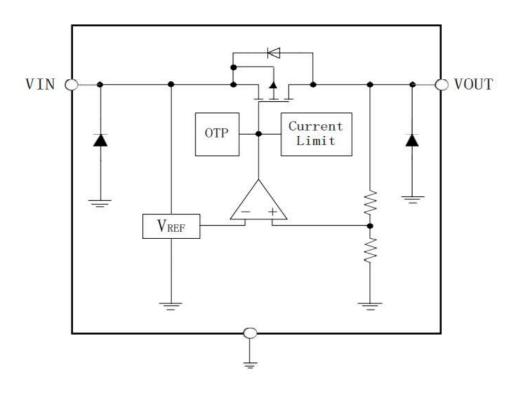
ORDERING INFORMATION

B1: SOT23-3L

B6 : SOT89-3L(Accuracy \pm 2%) B61 : SOT89-3L(Accuracy \pm 1%)

ABSOLUTE MAXIMUM RATINGS (Note)

SYMBOL	ITEMS	VALUE	UNIT
VIN	Input Voltage	-0.3~45	V
Vout	Output Voltage	-0.3~6.5	V
P _{DMAX}	Power Dissipation	OTP limited	W
Tj	Junction Temperature	-40~150	°C
Tstg	Storage Temperature	-55 to 150	℃
Tsolder	Package Lead Soldering Temperature (10s)	260	°C
ESD MM	Machine Mode	200	V
ESD HBM	Human Body Mode	8000	V

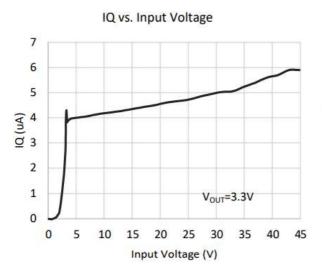

Note: Exceed these limits to damage to the device. Exposure to absolute maximum rating conditions may affect device reliability.

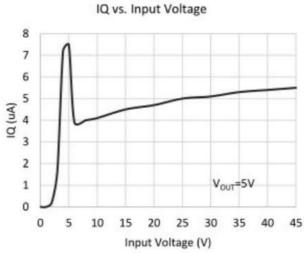
RECOMMANDED OPERATING RANGE

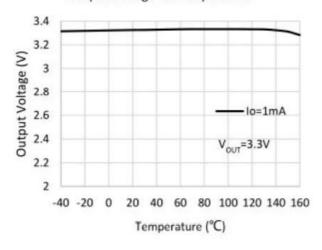
SYMBOL	ITEMS	VALUE	UNIT
V _{IN}	V _{IN} Supply Voltage	4.5 to 40	V
$R_{\theta JA}$	Thermal Resistance on PCB	45	°C/W
T _{OPT}	Operating Temperature	-40 to +105	$^{\circ}$

SIMPLIFIED BLOCK DIAGRAM

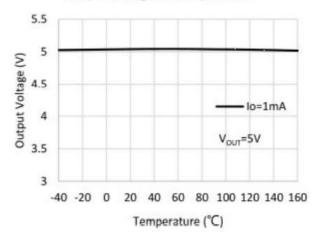
ELECTRICAL CHARACTERISTICS

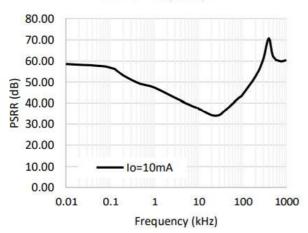

(V_{IN} =12V ; Tj=25°C unless otherwise noted.)

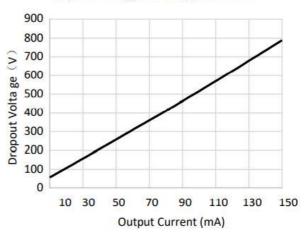

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input Supply Voltage		4.5		40	V
V _{OUT}	Output Voltage Accuracy	I _{OUT} =10mA	-1%		1%	V
D. DER VIEW	1116.1. 111.70	001	-2%		2%	V
I_Q	Quiescent Current			4.5	8	μΑ
I _{OUT}	Output Current		150	200		mA
V_{DROP}	Dropout Voltage	I_{OUT} =10mA ΔV_{OUT} = - V_{OUT} *2%		60		mV
		$I_{OUT}=100mA$ $\Delta V_{OUT}=-V_{OUT}*2\%$		600		mV
V_{LR}	Load Regulation	$1\text{mA} \le I_{\text{OUT}} \le 100\text{mA}$	10	20		mV
V_{SR}	Line Regulation	$I_{OUT}=1$ mA, $V_{IN}=(V_{OUT}+4V)$ to 45V		0.08		%/V
	Power Supply Rejection	Freq=100Hz		60		dB
PSRR	Ratio (Vin=10V, V _{PP} =0.5V,	Freq=1KHz		50		dB
	Iout=1mA)	Freq=10KHz		40		dB
I _{LIMIT}	Current Limit	V_{IN} =(V_{OUT} +1 V) to 30 V R_{LOAD} = V_{OUT} /1 A		350		mA
T _{SHDN}	Thermal Protection			165		°C
TC_{VOUT}	Output Voltage Temperature Coefficient	I_{OUT} =10mA -40 °C \leq T _{AMB} \leq 100 °C	20 0	±100		ppm/℃

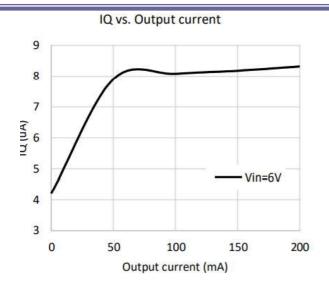

TYPICAL PERFORMANCE CHARACTERISTICS

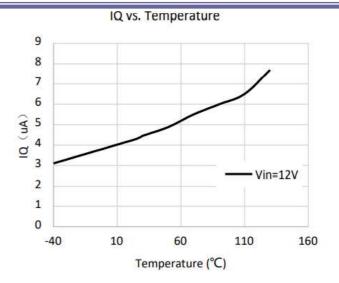
 $C_{IN} = 10 \mu F$, $C_{OUT} = 10 \mu F$, $T_{OPT} = 25^{\circ} C$, unless specified otherwise. (EC87XXK2B Package)

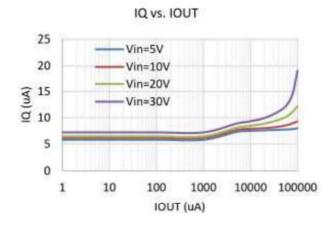



Output Voltage vs. Temperature

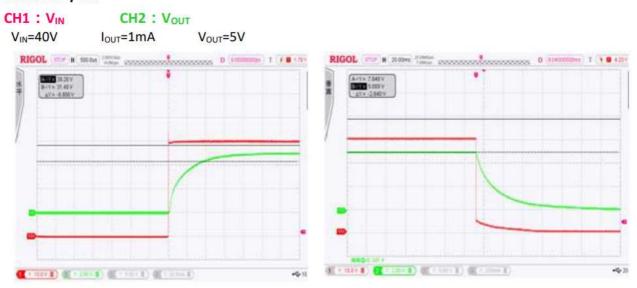

Output Voltage vs. Temperature

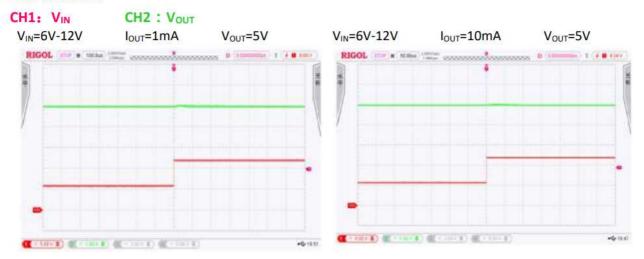



PSRR vs. Frequency



Dropout Voltage vs. Output Current





Power ON/OFF

Line Transient

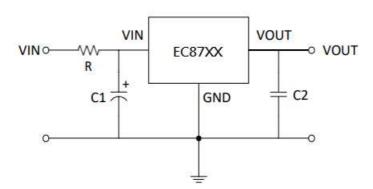
EC87XX

APPLICATION INFORMATION

INPUT CAPACITOR

An input capacitor of $10\mu F$ is required between the VIN and GND pin. The capacitor shall be placed as close as possible to VIN pin, and the use of electrolytic capacitors is recommended.

OUTPUT CAPACITOR

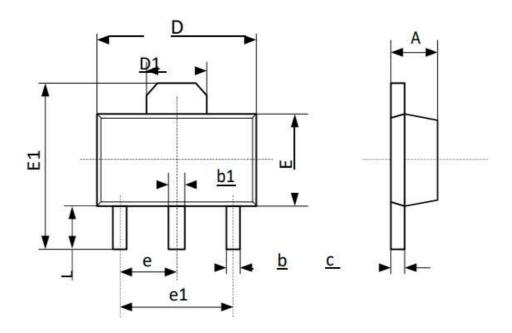

The recommended is 10uF MLCC capacitor. The minimum capacitance for stable and correct operation is $1\mu F$.

NO-LOAD STABILITY

The EC87XX will remain stable and in regulation with no external load. This is especially important in CMOS RAM keep-alive applications.

TYPICAL CIRCUIT

The following figure shows a typical application circuit for the EC87XX devices. Please keep in mind that in-rush current can push up the Vin overshoot by as much as 50%. For example, when Vin=30V, the in-rush caused spike voltage can be as high as 45V. Therefore the voltage rating of Cin needs to be higher than 50% of the application.

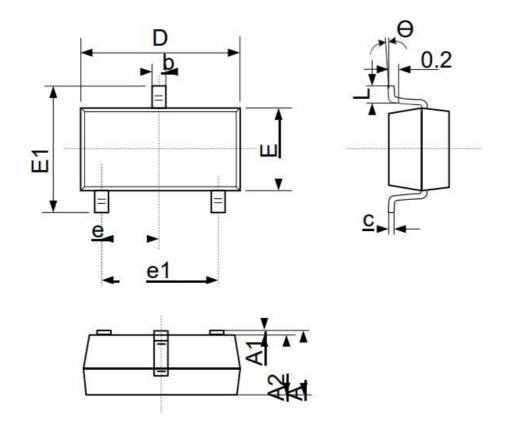

In live insertion application, it is suggested that R, C1 are selected as following:

- 1. $C1=10\mu F \sim 100\mu F$ electrolytic capacitor with maximum voltage greater than 50V, R=0
- 2. $C1=1\mu F\sim 10\mu F$ MLCC with maximum voltage greater than 50V and $R=2\Omega$ in the type of 1206

EC87XX

PACKAGE OUTLINE

Package	SOT89-3L	Devices per reel	1000Pcs	Unit	mm
---------	----------	------------------	---------	------	----


	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1.400	1.600	0.055	0.063
b	0.320	0.520	0.013	0.020
b1	0.400	0.580	0.016	0.023
С	0.350	0.440	0.014	0.017
D	4.400	4.600	0.173	0.181
D1	1.45	1.65	0.057	0.065
E	2.300	2.600	0.091	0.102
E1	3.940	4.250	0.155	0.167
e	1.50	O TYP	0.060	TYP
e1	3.00	O TYP	0.118 TYP	
L	0.900	1.200	0.035	0.047

45V, Ultra-Low Quiescent Current LDO

EC87XX

	Package	SOT23-3L	Devices per reel	3000Pcs	Unit	mm	7
- 1						A. C.	- 1

	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950	O(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0℃	8°C	0℃	8℃