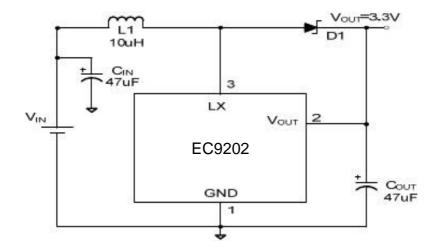


General Description

The EC9202 is a compact PFM step-up DC/DC converter that operates from an input voltage as low as 0.8 Volt. The low start-up input voltage makes EC9202 specially designed for portable devices from one or two cell battery, delivering up to 200mA load current at V_{IN} =1.8V V_{OUT} =3.3V. Typical efficiency for EC9202 is 85% when V_{IN} >=2.0V V_{OUT} =3.3V I_{LOAD} =1~60mA. Potential applications include low powered consumer products and battery powered portable products.

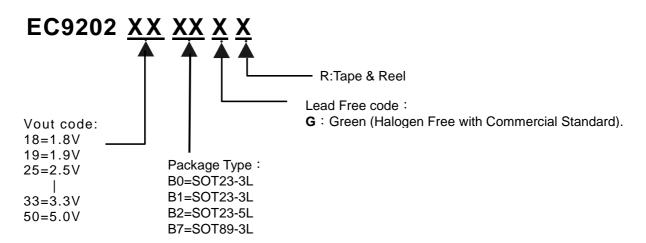
The EC9202 features a band gap reference, trimming technology, current -limited, PFM control scheme which combines the advantages of PWM (higher output power and efficiency) and those of traditional PFM (ultra-low quiescent current). The internal 0.6 ohm low turn-on resistance NMOS power switch provides stable and high-efficiency operation over a board load current range.

The EC9202 devices are available in SOT23-3,SOT23-5 & SOT89 package.


Features

- ♦ 0.8V Low Start-up Input Voltage at 1mA Load
- ♦ Operating Voltage Range : +0.8V to +5.5V
- ◆ Output Voltages : +1.8V to +5.0V with 100mV
- Deliver 200mA at 3.3V Output with 1.8V Input
- ♦ 85% High Efficiency (V_{IN} =2.0V, V_{OUT} =3.3V, I_{LOAD} =60mA)
- ± 2% Output Voltage Accuracy
- ♦ 4µA Low Switch-Off Supply Current
- ♦ 0.5µA Low Shutdown Supply Current
- ♦ SOT-23, SOT-25 & SOT-89 Package
- RoHS Compliant and 100% Lead (Pb)-Free and Green (Halogen Free with Commercial Standard)

Applications

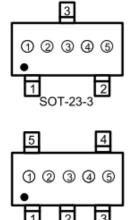

- PDA
- ♦ DSC
- MP3 Player
- Electronic Games
- Camcorders
- Portable Devices
- Single-and Dual-Cell Battery Operated Products

Typical Application Circuit

Ordering Information

Pin Description

Dert Ne	Pin		Symbol		
Part No.	SOT-23-3 (B1 Type)	SOT-23-3 (B0 Type)	Symbol	Pin Description	
3	1	1	GND	Ground Pin.	
(Top View) ●	2	3	V _{OUT}	IC Power Supply Pin. Connect This Pin to the Regulator Output.	
1 SOT-23-3	3	2	LX	Switch Pin. Connect Inductor/Diode Here.	

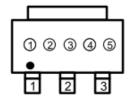

Part No.	Pin	Symbol	Pin Description
Part NO.	SOT-23-5	Symbol	Pin Description
	1	EN	Enable Pin.
5 4	2	V _{OUT}	IC Power Supply Pin. Connect This Pin to the Regulator Output.
(Top View)	3	NC	No Connect.
	4	GND	Ground Pin.
SOT-23-5	5	LX	Switch Pin. Connect Inductor/Diode Here.

200mA PFM Step-up DC-DC Converter With High Efficiency and Low Noise

Part No.	Pin	Symbol	Pin Description	
Fart NO.	SOT-89	Symbol		
	1	GND	Ground Pin.	
(Top View) ●	2	V _{OUT}	IC Power Supply Pin. Connect This Pin to the Regulator Output.	
1 2 3 SOT-89-3	3	LX	Switch Pin. Connect Inductor/Diode Here.	

Package Marking Information

1 Represents Products Series


Mark	Products Series
2	Part No. :EC9202

2 . 3 Represents Products Series

Mark		Description
23	Voltage Code	See Note 1

④ ∖ ⑤ Represents Production Date Code

- * There is a under-line on 1st digit for A type package.
- * There are two under-lines on 4th & 5th digit for Green package.
- * There is a top-line on 1^{at} digit for ±1% Output voltage accuracy.

Note1:

SOT-23

Mark	Voltage	Mark	Voltage
18	1.8V	36	3.6V
19	1.9V	40	4.0V
25	2.5V	50	5.0V
27	2.7V		
30	3.0V		
33	3.3V		

Absolute Maximum Rating

	Parameter		Symbol	Ratings	Units
S	upply Voltage	е		-0.3~+6.5	V
LX Pi	n Switch Vol	tage		-0.3~V _{OUT} +0.3	V
C	E Pin Voltag	е		-0.3~V _{OUT} +0.3	V
LX Pi	n Switch Cur	rent		700	mA
Junct	ion Tempera	ture	TJ	+150	°C
Thermal Res	sistance	SOT-89	θ _{JA}	180	°C/W
Power Diss	ipation	SOT-89	P _D	550	mW
Operating A	Ambient Terr	perature	T _{OPR}	-20 ~ +70	°C
Stora	age Tempera	ture	T _{STG}	-55 ~ +150	°C
Lead Temper	ature (solder	ing, 10sec)		+260	°C
	Human Body Model			2.0	ΚV
ESD Ratings	Machine Mc	del		200	V

Electrical Characteristics

(V_{IN}=1.8V, V_{OUT} =3.3V, Load Current=1mA, T_A =25°C, unless otherwise noted.)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IN}	Input Voltage				6.5	V
V _{ST}	Start-up Voltage	IL=1mA		0.8	0.9	V
V _{HOLD}	Holding Voltage	IL=1mA		0.70		V
V		Preset V _{OUT} =1.8V	1.764	1.8	1.836	V
V _{OUT}	Output Voltage	Preset V _{OUT} =5.0V	4.875	5.0	5.125	V
I _{DD1}	Switch On Current (V _{OUT})	V _{OUT} = Preset V _{OUT} *0.95 Iout=0mA		12	15	μA
I _{DD2}	Switch Off Current (V _{OUT})	V _{OUT} = Preset V _{OUT} *1.05		4	10	μA
I _{OFF}	Shutdown Current (V _{IN})	$CE = 0V, V_{IN} = 4.5V$			1.0	μA
V_{CEH}	CE "High" Threshold Voltage	CE = 0V 2V	0.6	0.9		V
V_{CEL}	CE "Low" Threshold Voltage	CE = 2V 0V		0.3	0.6	V
Fosc	Oscillator Frequency	V _{OUT} = Preset V _{OUT} *0.95	300	350	400	kHz
R _{DS(ON)}	Switch on Resistance			0.6		
I _{LXleak}	LX Leakage Current	V _{OUT} = V _{LX} =6V			0.5	μA
V _{LXLIM}	Switch Voltage Limit			0.425		V
η	Efficiency			85		%

Function Block Diagram

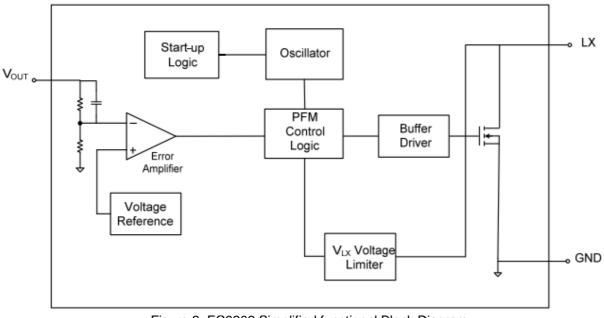
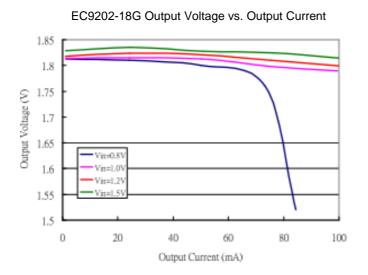
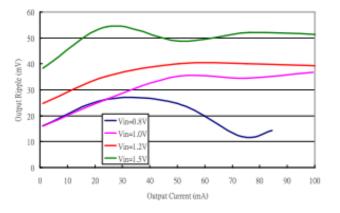
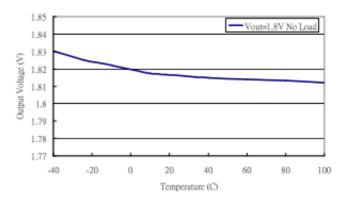



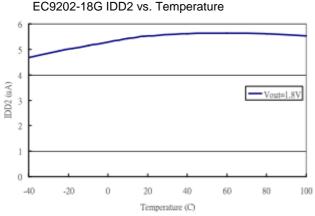
Figure 2. EC9202 Simplified functional Block Diagram

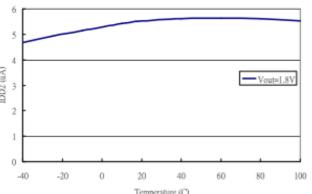
Typical Operating Characteristics

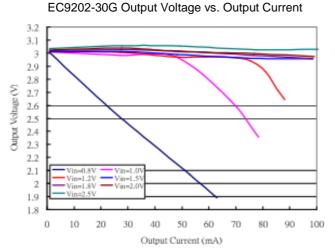
(V_{OUT}=1.8V, L=6.8uH, Diode=1N5819, C_{IN}=47uF, COUT=47uF, T_A=+25 $^{\circ}$ C, Unless otherwise noted)

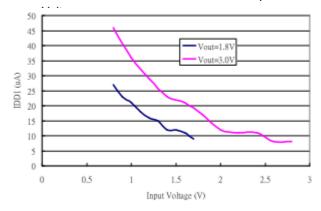


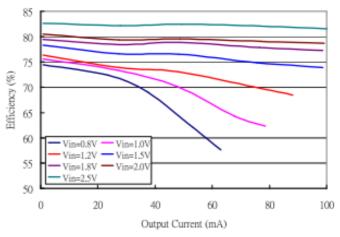




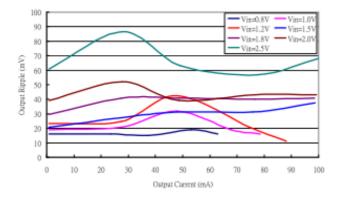

EC9202-18G Output Ripple vs. Output Current

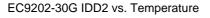


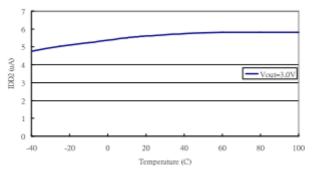

EC9202-18G Output Voltage vs. Temperature

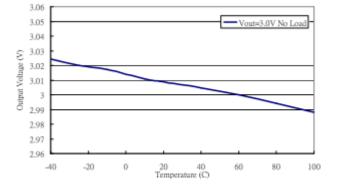


EC9202-18G & EC9202-30G IDD1 vs. Input




EC9202-30G Efficiency vs. Output Current




EC9202-30G Output Ripple vs. Output Current

EC9202-30G Output Voltage vs. Temperature

Detail Description

The EC9202 is a variable frequency voltage-mode step-up DC-DC converter for portable devices like DSC and PDA. The EC9202 combines a PFM step-up switching regulator, $0.7A/0.6\Omega$ N-channel power MOSFET, precision band gap reference, soft start, shutdown control, and a resistive divider for preset output. The switching DC-DC converter boosts a 1- to 4-cell input to a preset output between 1.8V and 5.0V. The 8 standard output voltages are 1.8V,2.5V, 2.7V, 3.0V, 3.3V, 3.6V, 4.0V and 5V. The EC9202 starts from a low 0.8V input at 1mA load current, and remains operational down to 0.7V at 20mA load.

Step-Up Converter

The step-up DC-DC converter operation can be understood by referring to the block diagram in Figure 2. PFM comparator monitors the output voltage via the feedback resistor. When the feedback voltage is higher than the reference voltage, the MOSFET switch is turned off. As the feedback voltage is lower than reference voltage and the MOSFET switch has been off for at least a period of minimum off-time decided by the minimum off-time oneshot, the MOSFET switch is then turned on for a period of on-time decided by maximum on-time one-shot, or until the V_{LXLIM} voltage limit signal is asserted.

During the first part of each switching cycle, the internal Nchannel MOSFET switch is turned on. This allows current to ramp up in the inductor and store energy in a magnetic field. During the second part of each cycle, the MOSFET is turned off, the voltage across the inductor reverses and forces current through the diode to the output filter capacitor and load. As the energy stored in the inductor is depleted, the current ramps down and the output diode turn off. The output filter capacitor stores the charge while the inductor current is higher than the output current, then sustains the output voltage until the next switching cycle.

Low-Voltage Start-Up Oscillator

The EC9202 use a CMOS, low-voltage start-up oscillator for a typically 0.8V startup input voltage at +25°C. On start-up, the low-voltage oscillator switches the N-channel MOSFET until the output voltage reaches 1.5V. Above this level, the normal PFM step-up converter and control circuitry take over. Once the device is in regulation, it can operate down to a 0.7V input since internal power for the IC is bootstrapped from the output voltage. Do not apply full load until the output exceeds 1.8V.

Soft Start

The EC9202 has internal soft start circuit that limits

current draw at startup, reducing transients on the input source. Soft-start is particularly useful for higher impedance input sources, such as Li+ and alkaline cells. When power is applied to the device, the soft start circuit first pumps up the output voltage to approximately 1.5V at a fixed duty cycle. This is the voltage level at which the controler can operate normally. In addition to that, the start up capability with heavy loads is also improve-

ed.

Current Limit

The EC9202 utilizes cycle-by-cycle current limiting by means of protecting the output MOSFET switch from overstress and preventing the small value inductor from saturation. Current limiting is implemented by monitoring the output MOSFET current build-up during conduction, and upon sensing an over-current conduction immediately turning off the switch for the duration of the

oscillator cycle. The voltage across the output MOSFET is monitored and compared against a reference by the V_{LXLIM} limiter. When the threshold is reached, a signal is sent to the PFM controller block to terminate the power switch conduction. The current limit threshold is typically set at 600mA.

Shutdown

The EC9202 enters shutdown to reduce quiescent current to typically 0.5μ A when CE pin is low. For normal operation, drive CE high or connect CE to V_{OUT}. During shutdown, the reference, gain block, and all feedback and control circuitry are off. The boost converter's output drops to one Schottky diode voltage drop below the input voltage and LX remains high impedance. The capacitance and load at V_{OUT} determine the rate at which V_{OUT} decays. Shutdown can be pulled as high as 6V, regardless of the voltage at V_{OUT}.

Application Information

Inductor Selection

The EC9202 is designed to work well with a 6.8μ H to 47μ H inductor in most applications. Low inductance values supply higher output current, but also increase the ripple and reduce efficiency. Higher inductor values reduce ripple and improve efficiency, but also limit output current. Choose a low DC-resistance inductor, usually less than 1 to minimize loss. It is necessary to choose an inductor with saturation current greater than the peak current that the inductor will encounter in the application. Saturation occurs when the inductor's magnetic flux density reaches the maximum level the core can support and inductance falls.

Capacitor Selection

The input capacitor stabilizes the input voltage and minimizes the peak current ripple from the source. The value of the capacitor depends on the impedance of the input source used. Small ESR (Equivalent Series Resistance) Tantalum or ceramic capacitor with value of 10μ F to 47μ F would be suitable.

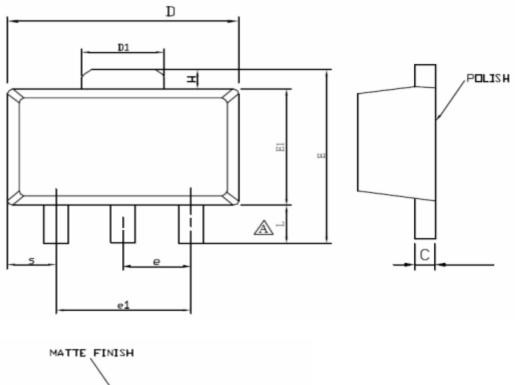
The output capacitor is used to sustain the output voltage when the internal MOSFET is switched on and smoothing the ripple voltage. Low ESR capacitor should be used to reduce output ripple voltage. Use a 47μ F to 68μ F SMD tantalum output capacitor with about 50m to 150m ESR to provide stable switching. For applications where space is a critical factor, two parallel 22μ F low profile SMD ceramic capacitors can be used. Smaller capacitors are acceptable for light loads or in applications that can tolerate higher output ripple.

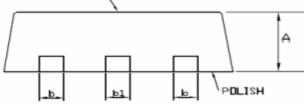
The input capacitor reduces peak currents and noise at the voltage source. Input capacitors must meet the input ripple requirements and voltage rating. The ESR of both input and output capacitors affects efficiency and output ripple. Output voltage ripple is the product of the peak inductor current and the output capacitor ESR. Use low ESR capacitors for best performance, or connect two or more output capacitors in parallel.

Schottky Diode Selection

The diode is the largest source of loss in DC–DC converters. The most important parameters which affect the efficiency are the forward voltage drop, V_F , and the reverse recovery time. The forward voltage drop creates a loss just by having a voltage across the device while a current flowing through it. The reverse recovery time generates a loss when the diode is reverse biased, and the current appears to actually flow backwards through the diode due to the minority carriers being swept from the P–N junction. A Schottky diode with the following characteristics is recommended:

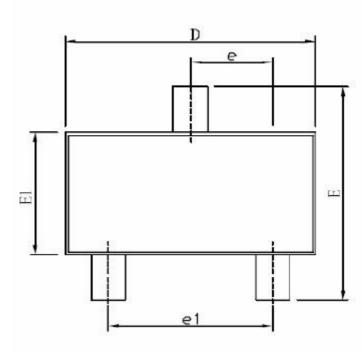
Small forward voltage, $V_F < 0.3 V$ Small reverse leakage current Fast reverse recovery time/switching speed Rated current larger than peak inductor current Reverse voltage larger than output voltage

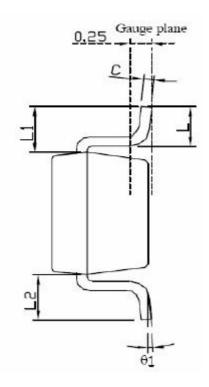

Layout Considerations

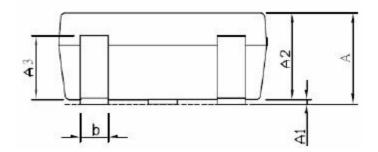

High switching frequencies make PC board layout a very important part of design. Good design minimizes excessive EMI on the feedback paths and voltage gradients in the ground plane, both of which can result in instability or regulation errors. Connect the inductor, input filter capacitor, and output filter capacitor as close to the device as possible, and keep their traces short, direct, and wide to reduce power loss so as to improve efficiency. Connect their ground pins at a single common node in a star ground configuration, or at a full ground plane.

The output capacitor should be placed close to the output terminals to obtain better smoothing effect on the output ripple.

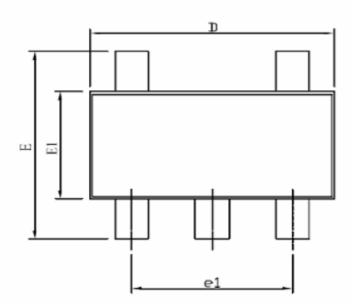
Mechanical Dimensions OUTLINE DRAWING SOT89-3L

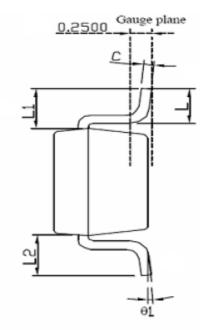


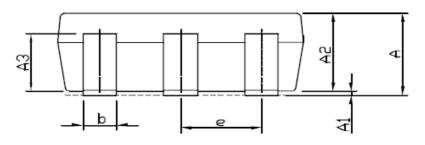



Symbol	Dimensions in millimeters			Dimensions in inches		
Symbol	Min	Nom	Max	Min	Nom	Max
Α	1.40	1.50	1.60	0.055	0.059	0.063
L	0.89	1.04	1.20	0.0350	0.041	0.047
b	0.36	0.42	0.48	0.014	0.016	0.018
b1	0.41	0.47	0.53	0.016	0.018	0.020
С	0.38	0.40	0.43	0.014	0.015	0.017
D	4.40	4.50	4.60	0.173	0.177	0.181
D1	1.40	1.60	1.75	0.055	0.062	0.069
Е	3.64		4.25	0.143		0.167
E1	2.40	2.50	2.60	0.094	0.098	0.102
e1	2.90	3.00	3.10	0.114	0.118	0.122
н	0.35	0.40	0.45	0.014	0.0169	0.018
s	0.65	0.75	0.85	0.026	0.030	0.034
e	1.40	1.50	1.60	0.054	0.059	0.063

Mechanical Dimensions OUTLINE DRAWING SOT23-3L






Cumbolo	Dimensions in Millmeters					
Symbols	Min	Nom	Max			
A	1.00	1.10	1.40			
A1	0.00	0.05	0.10			
A2	1.00	1.10	1.30			
A3	0.70	0.80	0.90			
b	0.35	0.40	0.50			
С	0.12	0.125	0.225			
D	2.70	2.90	3.10			
E	2.60	2.80	3.00			
E1	1.40	1.60	1.80			
e		0.95(Typ)	3 -			
e1		1.90(Typ)				
61	1°	5°	9°			
L.,	0.37					
L1		0.6REF				
L1-L2			0.12			

Mechanical Dimensions OUTLINE DRAWING SOT23-5

Symbolo	Dimensions in Millimeters					
Symbols	Min	Nom	Max			
Α	1.00	1.10	1.40			
A1	0.00		0.10			
A2	1.00	1.10	1.30			
A3	0.70	0.80	0.90			
b	0.35	0.40	0.50			
с	0.12	0.125	0.225			
D	2.70	2.90	3.10			
E1	1.40	1.60	1.80			
e1		1.90(TYP)				
E	2.60	2.80	3.00			
L	0.37					
θ1	1°	5°	9 °			
e		0.95(TYP)				
L1		0.6(REF)				
LI-L2			0.12			