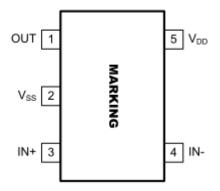


General Description

The EC5911 is wideband, low-noise, low-distortion operational amplifier, that offer rail-to-rail output and single-supply operation down to 2.5V. They draw 2.8mA of quiescent supply current, as well as low input voltage-noise density (13nV/ Hz) and low input current-noise density (400fA/ Hz). These features make the devices an ideal choice for applications that require low distortion and low noise. The EC5911 has output which swing rail-to-rail and their input common-mode voltage range includes wide bandwidth to 200MHz ground and offer (G=+1) .They are specified over the extended industrial temperature range (-45 C ~ 125 C). The single EC5911 is available in space-saving, SOT23-5 and SOP-8 packages.


Features

- Single-Supply Operation from +2.5V ~ +5.5V
- Rail-to-Rail Input / Output
- Gain-Bandwidth Product: 200MHz (Typ.)
- Low Input Bias Current: 10pA (Typ.)
- Low Offset Voltage: 5mV (Max.)
 Quiescent Current: 2.8mA (Typ.)
- Operating Temperature: -40°C ~ +125°C
- Available in SOT23-5 and SOP8 Packages

Applications

- Portable Equipment
- Mobile Communications
- Smoke Detector
- Sensor interface
- Medical Instrumentation
- Handheld Test Equipment
- imaging / video

Pin Assignments

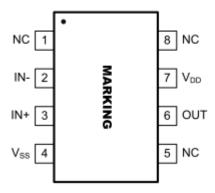
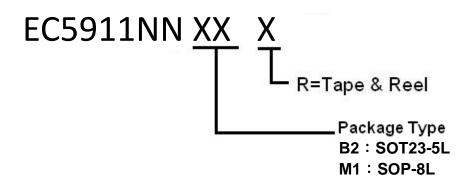



Figure 1. Pin Assignment Diagram (SOT23-5 and SOP8 Package)

Ordering Information

Part Number	Package	Marking	Marking Information	
EC5911NNB2R	SOT23-5L	911YW	1. Y: Year code(D=2013;E=2014;F=2015···) 2. W: Week Code(The big character of A~Z is for the week of 1~26, and small a~z is for the week of 27~52.	
EC5911NNM1R	SOP-8L	EC5911 LLLLL YYWWT	1. LLLLL: Last five Number of Lot No 2. YY: Year Code 3. WW: Week Code 4. T: Internal Tracking Code	

Absolute Maximum Ratings

Condition	Min	Max		
Power Supply Voltage (VDD to Vss)	-0.5V	+7V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	VDD+0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-40°C	+125°C		
Junction Temperature	+15	0°C		
Storage Temperature Range	-65°C	+150°C		
Lead Temperature (soldering, 10sec)	+30	0°C		
Package Thermal Resistance (T _A =+25°C)				
SOT23-5, θ _J A	190°C			
SOP8, θJA	130°C			

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristic

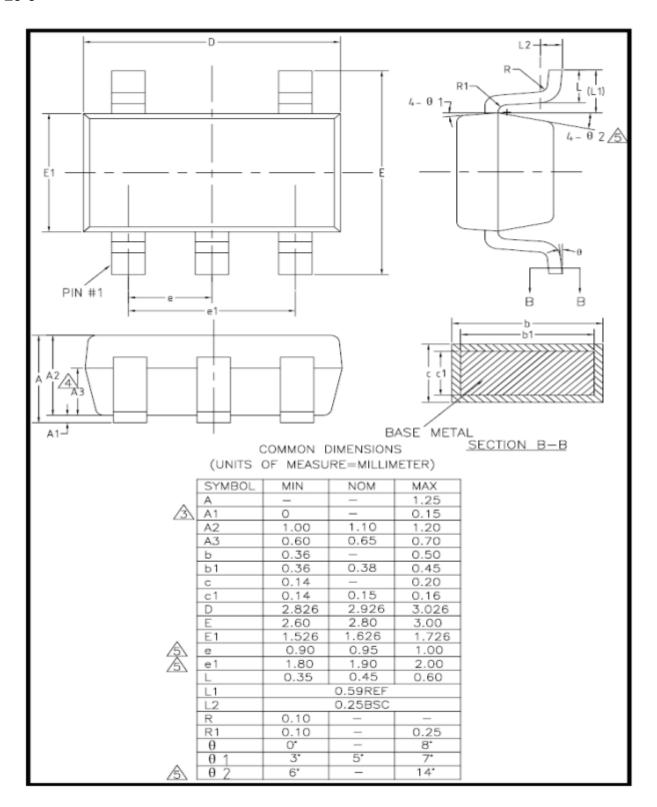
 $(V_{DD} = +5V, \ Vss = 0V, \ V_{CM} = 0V, \ V_{OUT} = V_{DD}/2, \ R_L = 100K \ tied \ to \ V_{DD}/2, \ SHDNB = V_{DD}, \ T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Notes 1,2)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units	
Supply-Voltage Range		Guaranteed by the PSRR te	st	2.5	-	5.5	V	
Quiescent Supply Current (per Amplifier)	V _{DD}	VDD = 5V		-	2.8	3.3	mA	
	Vos	T _A =25°C		-	±1	-		
Input Offset Voltage		Ta=-40°C~+85°C		-	±8	-	mV	
		Ta=-40°C~+125°C		-	-	±10		
Input Offset Voltage Tempco	ΔVos/ΔT			-	±2	-	μV/°C	
Input Bias Current	lв	(Note 3)		-	±10	±100	рА	
Input Offset Current	los	(Note 3)		-	±10	±100	рА	
Input Common-Mode Voltage Range	Vсм	Guaranteed by the T _A = 25°C CMRR test, T _A = -40°C ~ +12		-0.1	-	VDD+0.1.5	V	
Common-Mode Rejection Ratio	CMRR	Vss-0.1V≤Vcм≤Vdd+0.1V Ta = 25°C		-	75	-	dB	
		Vss≤VcM≤5Vdd Ta = 25°C		72	90	-		
		Vss-0.1V≤Vcм≤Vdd+0.1V Ta = -40°C ~ +125°C		-	68	-		
Power-Supply Rejection Ratio	PSRR	$V_{DD} = +2.5V \text{ to } +5.5V$		75	90	-	dB	
	Av	$R_L = 10k\Omega$ to $V_{DD}/2$ $V_{OUT} = 100mV$ to $V_{DD}-125mV$		90	100	-		
Open-Loop Voltage Gain		$R_L = 1k\Omega$ to $V_{DD}/2$ $V_{OUT} = 200mV$ to $V_{DD}-250mV$		80	95	-	dB	
		RL = 500Ω to VDD/2 VOUT = 350 mV to VDD- 500 mV	V	70	80	-		
Output Voltage Swing	Vouт	VIN+-VIN- ≥10mV V	/ _{DD} -Vон	-	10	30		
		$R_L = 10k\Omega$ to $V_{DD}/2$	oL-Vss	-	10	35		
		VIN+-VIN- ≥ 10mV V	/ _{DD} -Vон	-	80	50	mV	
		$R_L = 1k\Omega$ to $V_{DD}/2$	oL-Vss	-	30	50		
		V _{IN+} -V _{IN-} ≥ 10mV V	ио-Vон	-	100	140		
		$R_L = 500\Omega$ to $V_{DD}/2$	/oL-Vss	-	100	140		
Output Short-Circuit Current	Isc	Sinking or Sourcing		-	±100	-	mA	
Gain Bandwidth Product	GBW	Av = +1V/V		-	200	-	MHz	
Slew Rate	SR	Av = +1V/V		-	125	-	V/µs	

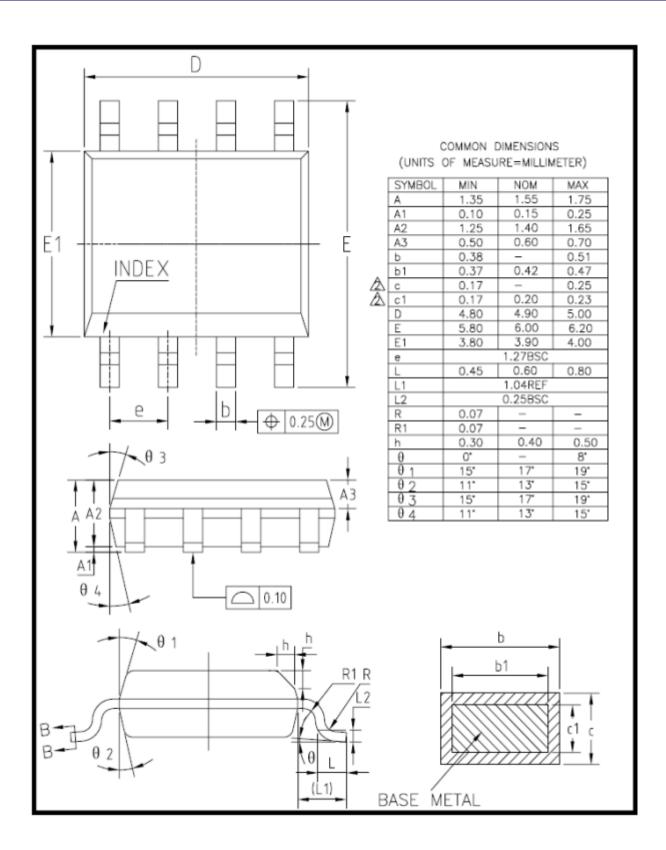
Electrical Characteristic

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Differential Phase error (NTSC)	DP	G=2,RL=150Ω	-	0.03	-	deg
Differential Gain error (NTSC)	DG	G=2,RL=150Ω	-	0.09	-	dB
Settling Time	ts	To 0.01%, Vouт = 2V step Av = +1V/V	-	52	-	μs
Over Load Recovery Time		Vin × Gain=Vs	-	2	-	μs
Input Voltage Noise Density	C n	f = 1 kHz	-	15	-	nV/√Hz
,		f = 30kHz	-	13	-	
Input Current Noise Density	İn	f = 1 kHz	-	400	-	fA∕√Hz
Total Harmonic Distortion plus Noise	THD+N	fc=5MHZ,Vout=2Vp-p,G=+2	-	-60	-	dB

Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$; all specifications over the automotive temperature range is guaranteed by design, not production tested.


Note 2: Parameter is guaranteed by design.

Note 3: Peak-to-peak input noise voltage is defined as six times rms value of input noise voltage.


Package Information

SOP23-5

SOP8

