

### **General Description**

The EC95810 series are highly accurate, ultra-low current consumption voltage detectors, developed using CMOS process. A delay circuit is built-in for microprocessor supervisory circuits in MCU and digital systems. Two output forms N-channel opendrain and CMOS output are available. The device is ideal for battery powered portable devices which require low current consumption.

The EC95810 consists of a comparator, a voltage reference unit, a resistor divider, an output driver, a hysteresis circuit, and a delay circuit. The detection voltage is fixed internally with  $\pm 2.0\%$  accuracy by advanced trimming technology.

The devices are available in SOT-23, SC-82 and SC-70 packages.

#### Features

- Ultra-Low Quiescent Current : 1.2 µA (Typ.)
- High Accuracy of Detection Voltage : ±2%
- Hysteresis Width 5% VDET (Typ.)
- Detection Voltage : 1.6V to 6.0V (0.1V Step)
- Built-in Delay Circuit : 200ms (Typ.)
- Operating Voltage Range : 1.0V to 6.0V
- N-ch Open Drain and CMOS Output
- SOT-23, SC-82 and SC-70 Packages

• RoHS Compliant and 100% Lead (Pb)-Free and Green (Halogen Free with Commercial Standard)

#### **Applications**

- Microprocessor Reset Circuitry
- Memory Battery Back-up Circuits
- Power-on Reset Circuits
- Power Failure Detection
- System Battery Life and Charge Voltage Monitors
- Delay Circuitry



## **Typical Application Circuit**



#### Marking Information

1. SOT23-3L

| Package  | Part Number   | Marking        | Marking Information                              |
|----------|---------------|----------------|--------------------------------------------------|
|          |               | 05040          | XX : Detection Voltage(16=1.6V;17=1.7V           |
| SOT23-3L | EC95810NXXB1R | 95810<br>NXXYW | 18=1.8V····)                                     |
|          |               |                | Y : Year code(D=2013;E=2014;F=2015…)             |
|          |               |                | W:Week Code( The big character of A~Z is for the |
| SUT33-31 |               | 95810          | week of 1~26, and small a~z is for the week of   |
| 50125-5L |               | CXXYW          | 27~52.                                           |
|          |               |                |                                                  |

#### 2. SC70-3L & SC82-4L



(1) Represents Products Series(See Note1)

(2) Represents decimal number of detect voltage(See Note 2)

(3) Represents week Code of Production Date Code

The big character of A~Z is for the week of 1~26, and small a~z is for the week of 27~52.

(4) Represents Pin Type of Product

N is Normal; I is for SC82-4L Pin Type I; S is for SC82-4L Pin Type S

Note : Starting with underlined second digit, a bar is for production year 2012. The next bar is mark on top of 3<sup>rd</sup> digit is for year 2013. The next bar is mark on bottom of 3rd is for year 2014. The next bar is mark on top of 4<sup>th</sup> digit is year for 2015. The naming pattern continues with consecutive characters for later years.



#### Note 1 : Represents Products Series

| Mark | Vout Type | Voltage(V) | Mark | Vout Type | Voltage(V) |
|------|-----------|------------|------|-----------|------------|
| R    | CMOS      | 0.X        | 3    | N-ch      | 0.X        |
| т    | CMOS      | 1.X        | 4    | N-ch      | 1.X        |
| U    | CMOS      | 2.X        | 5    | N-ch      | 2.X        |
| w    | CMOS      | 3.X        | 6    | N-ch      | 3.X        |
| 0    | CMOS      | 4.X        | 7    | N-ch      | 4.X        |
| 1    | CMOS      | 5.X        | 8    | N-ch      | 5.X        |
| 2    | CMOS      | 6.X        | 9    | N-ch      | 6.X        |

Note 2 : Represents decimal number of detect voltage

| Mark | Voltage(V) | Mark | Voltage(V) |
|------|------------|------|------------|
| 0    | X.0        | 5    | X.5        |
| 1    | X.1        | 6    | X.6        |
| 2    | X.2        | 7    | X.7        |
| 3    | X.3        | 8    | X.8        |
| 4    | X.4        | 9    | X.9        |

Marking Example :



Part No:EC95810N27C7IR Date Code:2013 year 24th week

SC82-4L Pin Type I



## **Pin Description**

| Part NO.   | Part NO.                         | Pin | Symbol           | Pin Description       |
|------------|----------------------------------|-----|------------------|-----------------------|
|            |                                  | 1   | GND              | Ground Pin.           |
| (Top View) | EC95810CXXB1NR<br>EC95810NXXB1NR | 2   | V <sub>OUT</sub> | Regulator Output Pin. |
| SOT-23     |                                  | 3   | V <sub>IN</sub>  | Regulator Input Pin.  |
| 4 3        |                                  | 1   | V <sub>OUT</sub> | Regulator Output Pin. |
| (Top View) | EC95810CXXC7IR                   | 2   | V <sub>IN</sub>  | Regulator Input Pin.  |
|            | EC95810NXXC7IR                   | 3   | NC               | No Connect            |
| SC-82      |                                  | 4   | GND              | Ground Pin.           |
| 4 3        |                                  | 1   | V <sub>OUT</sub> | Regulator Output Pin. |
| (Top View) | EC95810CXXC7SR                   | 2   | V <sub>IN</sub>  | Regulator Input Pin.  |
|            | EC95810NXXC7SR                   | 3   | NC               | No Connect            |
| SC-82      |                                  | 4   | GND              | Ground Pin.           |
| 3          |                                  | 1   | GND              | Ground Pin.           |
| (Top View) | EC95810CXXC1NR<br>EC95810NXXC1NR | 2   | V <sub>OUT</sub> | Regulator Output Pin. |
| SC-70      |                                  | 3   | V <sub>IN</sub>  | Regulator Input Pin.  |

### Absolute Maximum Rating

| Parameter                     |               | Symbol           | Ratings                   | Units |
|-------------------------------|---------------|------------------|---------------------------|-------|
| Input Voltage V <sub>IN</sub> | to GND        | V <sub>IN</sub>  | 6.0                       | V     |
| Output Voltage,               | CMOS          | Vour             | GND~V <sub>IN</sub> +0.3V | V     |
| Output Voltage,               | N-ch          | V001             | GND~6V                    | •     |
| Output Current                |               | Ι <sub>Ουτ</sub> | 50                        | mA    |
| Junction Temperature          |               | TJ               | +155                      | °C    |
|                               | SOT23-3L      |                  | 310                       |       |
| Power Dissipation             | SC82-4L       | P <sub>D</sub>   | 250                       | mW    |
| SC70-3L                       |               |                  | 250                       |       |
| Operating Ambient Temperature |               | T <sub>OPR</sub> | -40 ~ +105                | °C    |
| Storage Temperature           |               | T <sub>STG</sub> | -55 ~ +150                | °C    |
| Lead Temperature (sold        | ering, 10sec) |                  | +260                      | °C    |

Note :

\* The power dissipation values are based on the condition that junction temperature  $T_J$  and ambient temperature  $T_A$  difference is 100°C.

\* Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and function operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum -rated conditions for extended periods may affect device reliability.

### **Electrical Characteristics**

(T<sub>A</sub>=25°C, unless otherwise noted.)

| Symbol            | Parameter               | Test                              | t Conditions        | Min                        | Тур                        | Max                        | Unit       |
|-------------------|-------------------------|-----------------------------------|---------------------|----------------------------|----------------------------|----------------------------|------------|
| V <sub>IN</sub>   | Operating Voltage       |                                   |                     | 1.0                        |                            | 6.0                        | V          |
| V <sub>DET</sub>  | Detection Voltage       |                                   |                     | V <sub>DET</sub> *<br>0.98 | V <sub>det</sub>           | V <sub>DET</sub> *<br>1.02 | V          |
| V <sub>HYS</sub>  | Hysteresis Width        |                                   |                     | V <sub>DET</sub> *<br>0.03 | V <sub>DET</sub> *<br>0.05 | V <sub>DET</sub> *<br>0.08 | V          |
| I <sub>Q</sub>    | Quiescent Current       | V <sub>IN</sub> =5V               |                     |                            | 1.2                        | 3.5                        | μA         |
|                   |                         | N-ch                              | V <sub>IN</sub> =2V | 3                          | 7                          |                            |            |
| I <sub>OUT</sub>  | Output Current          | Output                            | V <sub>IN</sub> =3V | 5                          | 10                         |                            | mA         |
|                   |                         | •                                 | V <sub>IN</sub> =5V | 7                          | 13                         |                            |            |
| I <sub>LEAK</sub> | Leakage Current         | N-ch, $V_{IN}=V_O$                | <sub>UT</sub> =5V   |                            |                            | 0.1                        | μA         |
| T <sub>c</sub>    | Temperature Coefficient | -40°C <t<sub>A&lt; +105°C</t<sub> |                     |                            | 100                        | 350                        | ppm/<br>°C |
| T <sub>DLY</sub>  | Transient Delay Time    |                                   |                     | 100                        | 200                        | 400                        | mS         |



## **Function Block Diagram**



N-ch Open drain Output



### **Typical Operating Characteristics**

(EC95810N22C7IR tested, TA=+25°C, unless otherwise noted.)

### (1) Output Voltage vs. Input Voltage



### (3) Detect Voltage v.s Amibent Temperature



### (2) Supply Current v.s Input Voltage



## (4) Supply Current v.s Amibent Temperature



EC95810N22C7IR



(5) Start-up Voltage Waveform



(6) Shutdown Voltage Waveform





### **Detail Description**

#### **Basic Operation**

For EC95810C CMOS Active low output:



(1) When the input voltage  $V_{IN}$  is higher than the release voltage  $V_{REL}$  ( $V_{REL} = V_{DET} + V_{HYS}$ ), the N-ch MOS is OFF and P-ch MOS is ON to provide  $V_{IN}$  at the output. Since NMOS is OFF, the comparator input voltage is

V<sub>IN</sub> x (R2+R3) / (R1+R2+R3)

When the  $V_{IN}$  goes below the  $V_{REL}$ ,  $V_{IN}$  keeps at the output since  $V_{IN}$  remains above the detection voltage  $V_{DET}$ . The difference between  $V_{REL}$  and  $V_{DET}$  is the hysteresis range. (2) When the  $V_{IN}$  goes below the  $V_{DET}$ , the N-ch MOS is ON and P-ch MOS is OFF to provide GND level at the output. At this time NMOS is ON, the comparator input voltage is

V<sub>IN</sub> x R2 / (R1+R2)

(3) When the V<sub>IN</sub> falls below the minimum operating voltage, the output becomes undefined changed to V<sub>IN</sub> if the output is pulled up to V<sub>IN</sub>.

(4) When the V<sub>IN</sub> rises above the minimum operating voltage, the GND level appears at the output. The GND level keeps at the output even when V<sub>IN</sub> goes above the detection voltage V<sub>DET</sub>, as long as it doesn't exceed the release voltage V<sub>REL</sub>.



(5) When the  $V_{IN}$  rises above the release voltage  $V_{REL}$ , the N-ch MOS is OFF and P-ch MOS is ON to provide  $V_{IN}$  at the output after the delay time counted by the internal delay circuit.



#### **Delay Circuit**

The delay circuit delays the output signal from the time when the power voltage  $V_{IN}$  exceeds the release voltage  $(V_{REL})$ . The output signal is not delayed when the  $V_{IN}$  goes below the detection voltage  $(V_{DET})$ . The built-in delay circuit provides benefits of MCU system reliability and low cost by eliminating external components. The output waveform relative to input signal is shown in the figure.



### **Oscillation Notice**

When a resistor is connected between the input voltage and the input pin  $V_{IN}$  with CMOS output configuration, oscillation may occur due to voltage drop at  $R_{IN}$ . The voltage drop is

 $V_{DROP} = R_{IN} \times I_{OUT}$ 



When the  $V_{IN}$  input voltage rises above the release voltage, the detector output voltage increases and the load current  $I_{OUT}$  will flow at  $R_{LOAD}$ . A voltage drop is produced at  $R_{IN}$ . The voltage drop will also lead to a fall in the input voltage at  $V_{IN}$  pin. When the  $V_{IN}$  input voltage falls below the detection voltage, output voltage falls to GND and the output current will cease. Then the voltage drop at  $R_{IN}$  will disappear, and the  $V_{IN}$  input voltage will rise to commence release operation. Oscillation may occur with this release detection-release repetition. It's recommended not to use the CMOS configuration when a resistor  $R_{IN}$  is connected between  $V_{IN}$  input pin and the powersource. Please use N-channel open drain configuration when  $R_{IN}$  is required.



#### Change of Detection Voltage

For EC95810N N-channel open drain output configuration, the detection voltage can be changed with resistance dividers as shown in the next figure.



Detection voltage is changed to  $V_{DET} x (R1+R2) / R2$ 

Hysteresis width is also changed to

V<sub>HYS</sub> x (R1+R2) / R2

Resistor R1 should be 75 k $\Omega$  or less to avoid oscillation. The detection voltage can also be changed with diodes as shown in the figure.



Detection voltage becomes

 $V_{F1} + V_{F2} + V_{DET}$ 



EC95810

#### Mechanical Dimensions OUTLINE DRAWING SOT23-3L







| Symbols | Dimensions in Millmeters |           |       |  |  |
|---------|--------------------------|-----------|-------|--|--|
| Symbols | Min                      | Nom       | Max   |  |  |
| Α       | 1.00                     | 1.10      | 1.40  |  |  |
| A1      | 0.00                     | 0.05      | 0.10  |  |  |
| A2      | 1.00                     | 1.10      | 1.30  |  |  |
| A3      | 0.70                     | 0.80      | 0.90  |  |  |
| b       | 0.35                     | 0.40      | 0.50  |  |  |
| С       | 0.12                     | 0.125     | 0.225 |  |  |
| D       | 2.70                     | 2.90      | 3.10  |  |  |
| E       | 2.60                     | 2.80      | 3.00  |  |  |
| E1      | 1.40                     | 1.60      | 1.80  |  |  |
| e       |                          | 0.95(Typ) |       |  |  |
| e1      |                          | 1.90(Typ) |       |  |  |
| 61      | 1°                       | 5°        | 9°    |  |  |
| L       | 0.37                     |           |       |  |  |
| L1      |                          | 0.6REF    |       |  |  |
| L1-L2   |                          |           | 0.12  |  |  |



# Mechanical Dimensions

OUTLINE DRAWING SC82-4L(Pin Type I)



| Symbols | Dimension in millimeters |       |            | Dime  | Dimension in inches |            |  |
|---------|--------------------------|-------|------------|-------|---------------------|------------|--|
| Symbols | Min                      | Nom   | Max        | Min   | Nom                 | Max        |  |
| A       | 0.80                     | 10000 | 1.10       | 0.031 |                     | 0.043      |  |
| A1      | 0.00                     |       | 0.10       | 0.000 |                     | 0.004      |  |
| A2      | 0.70                     | 0.90  | 1.00       | 0.027 | 0.035               | 0.039      |  |
| b       | 0.25                     | 0.30  | 0.40       | 0.010 | 0.012               | 0.016      |  |
| b1      | 0.35                     | 0.40  | 0.50       | 0.014 | 0.016               | 0.020      |  |
| С       | 0.10                     |       | 0.26       | 0.004 |                     | 0.010      |  |
| D       | 1.80                     | 2.00  | 2.20       | 0.071 | 0.079               | 0.087      |  |
| E1      | 1.15                     | 1.25  | 1.35       | 0.045 | 0.049               | 0.053      |  |
| E       | 1.80                     | 2.10  | 2.40       | 0.071 | 0.083               | 0.094      |  |
| e       |                          | 1.30  |            |       | 0.051               |            |  |
| L       | 0.26                     | 0.36  | 0.46       | 0.010 | 0.014               | 0.018      |  |
| L2      |                          | 0.15  |            |       | 0.006               |            |  |
| У       | 5553                     |       | 0.10       | 0     |                     | 0.004      |  |
| θ       | 0*                       | 2000  | <b>8</b> ° | 0°    |                     | <b>8</b> ° |  |
| 01      | <b>4</b> °               |       | 12°        | 4°    |                     | 12°        |  |



Mechanical Dimensions

OUTLINE DRAWING SC82-4L(Pin Type S)



| Cumholo | Dimens     | sion in mill | imeters    | Dimension in inches |       |            |
|---------|------------|--------------|------------|---------------------|-------|------------|
| Symbols | Min        | Nom          | Max        | Min                 | Nom   | Max        |
| A       | 0.80       |              | 1.10       | 0.031               |       | 0.043      |
| A1      | 0.00       |              | 0.10       | 0.000               |       | 0.004      |
| A2      | 0.70       | 0.90         | 1.00       | 0.027               | 0.035 | 0.039      |
| b       | 0.25       | 0.30         | 0.40       | 0.010               | 0.012 | 0.016      |
| b1      | 0.35       | 0.40         | 0.50       | 0.014               | 0.016 | 0.020      |
| С       | 0.10       |              | 0.26       | 0.004               |       | 0.010      |
| D       | 1.80       | 2.00         | 2.20       | 0.071               | 0.079 | 0.087      |
| E1      | 1.15       | 1.25         | 1.35       | 0.045               | 0.049 | 0.053      |
| E       | 1.80       | 2.10         | 2.40       | 0.071               | 0.083 | 0.094      |
| e       |            | 1.30         |            |                     | 0.051 |            |
| L       | 0.26       | 0.36         | 0.46       | 0.010               | 0.014 | 0.018      |
| L2      | 222        | 0.15         | 1000       | 3222                | 0.006 |            |
| У       | 2017       |              | 0.10       | 100000              |       | 0.004      |
| θ       | 0*         |              | <b>8</b> ° | 0°                  |       | <b>8</b> ° |
| 01      | <b>4</b> ° |              | 12°        | <b>4</b> °          |       | 12°        |

1

01(2x)

O Y



## **Mechanical Dimensions**

OUTLINE DRAWING SC70-3L



| Cumphiala | Dimens | ions in mil | Imeters      | Dimensions in millmeters |       |       |  |
|-----------|--------|-------------|--------------|--------------------------|-------|-------|--|
| sympols - | Min    | Nom         | Max          | Min                      | Nom   | Max   |  |
| Α         | 0.80   |             | 1.10         | 0.031                    |       | 0.043 |  |
| A1        | 0.00   |             | 0.10         | 0.000                    |       | 0.004 |  |
| A2        | 0.70   | 0.90        | 1.00         | 0.028                    | 0.035 | 0.039 |  |
| b         | 0.25   |             | 0.40         | 0.010                    |       | 0.016 |  |
| С         | 0.08   |             | 0.22         | 0.003                    |       | 0.009 |  |
| D         | 1.80   | 2.00        | 2.20         | 0.071                    | 0.079 | 0.087 |  |
| E         | 1.80   | 2.10        | 2.40         | 0.071                    | 0.083 | 0.094 |  |
| E1        | 1.15   | 1.25        | 1.35         | 0.045                    | 0.049 | 0.053 |  |
| e         |        | 1.30        |              |                          | 0.051 |       |  |
| L         | 0.26   | 0.36        | 0.46         | 0.010                    | 0.014 | 0.018 |  |
| L2        |        | 0.15        |              |                          | 0.006 |       |  |
| У         |        |             | 0.10         |                          |       | 0.004 |  |
| θ         | 0°     | 4°          | <b>8</b> °   | 0°                       | 4°    | 8°    |  |
| 01        | 4°     |             | 1 <b>2</b> ° | 4°                       |       | 12°   |  |