

General Description

The EC8815 series is a CMOS low-dropout linear regulator that operates in the input voltage range from +2.4V to +7.0V and delivers 1.5A output current.

The EC8815 is available fixed output voltage type is preset at an internally trimmed voltage 1.8V, 2.5V, or 3.3V. Other options 1.0V, 1.2V, 1.5V, 2.85V, 3.0V and 3.6V are available by special order only.

The EC8815 consists of a 0.95V bandgap reference, an error amplifier, and a P-channel pass transistor. Other features include short-circuit protection and thermal shutdown protection. The EC8815 series devices are available in SOT-223,TO-252, and TO-263 packages.

Applications

- Active SCSI Terminators
- High Efficiency Linear Regulators
- Monitor Microprocessors
- Low Voltage Micro-Controllers
- Post Regulator for Switching Power

Simplified Application Circuit

Features

- Operating Voltage Range : +2.4V to +7.0V
- Output Voltages : +1.0V to +5.0V (0.1V Step)
- Maximum Output Current : 1.5A
- Dropout Voltage : 900mV @ 1.5A(Typ.)
- 35 uS Fast Response when Power-on
- Low Current Consumption : 40µA (Typ.)
- ±2% Output Voltage Accuracy, Vout ≥ 1.8V
- Low ESR Capacitor Compatible
- High Ripple Rejection : 55 dB (Typ.)
- Output Current Limit Protection : 2.0A (Typ.)
- Short Circuit Protection : 1.0A (Typ.)
- Thermal Overload Shutdown Protection
- SOT-223, TO-252 and TO-263 Packages
- RoHS Compliant and 100% Green (Halogen Free with Commercial Standard)

Ordering Information

Note :

The difference between "J", "G" & "X" type and "P" & "R" type and "Q" & "S" please refer to "Pin Description".

Pin Description

Part NO.		Pin		Symbol	Pin Description
SOT-223	SOT-223(J)	SOT-223(G)	SOT-223(X)	Symbol	Fill Description
	3	1	3	Vin	Regulator Input Pin.
(Top View)	1	2	2	GND	Ground Pin.
11 2 3	2	3	1	Vout	Regulator Output Pin
Part NO.		Pin		Symbol	Pin Description
TO-252	TO-252	(P)	TO-252 (R)	Symbol	
	1 3		3	Vin	Regulator Input Pin.
(Top View)	2		1		Ground Pin.
	3		2	Vout	Regulator Output Pin

Pin Description

Part NO.	Pin		Symbol	Pin Description	
TO-263	5 TO-263 (Q) TO-263 (Cymbol		
	1	3	Vin	Regulator Input Pin.	
(Top View)	2	1	GND	Ground Pin.	
	3	2	Vout	Regulator Output Pin	

Package Marking Information

Top Point Represents Products Series

Mark	Product Series	
Top Point	Part No. :EC8815	

(1) 、 (2) 、 (3) 、 (4) 、 (5) Represents Products Series

Mark Description		
1 2	Voltage	Voltage Code
3	J, G, X, P, R,Q,S	Pin Name Code
4	G	Green Code
5	Accuracy	2(±2%)

⑥ 、⑦ Represents Production Date Code

⑥ Year 16 bit code ' 08 = 8'09 = 9'10 = A'11 = B' 12 = C....16 = F

⑦ Weekly 1 ~ 26 = A ~ Z' 27 ~ 52 = a ~ z

Example:

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Voltage Vi₀ to GND		Vin	9.0	V
Output Current Limit, I(LIMIT)		Ιουτ	2.0	A
Junction Temperature		TJ	+155	°C
	SOT-223		155	°C/W
I hermal Resistance	TO-252	θյΑ	85	°C/W
Resistance	TO-263		60	°C/W
	SOT-223		900	
Power Dissipation	TO-252	PD	1200	mW
	TO-263		1670	
Operating Ambient Temperature		Topr	-40~+85	°C
Storage Temperature		Тѕтҫ	-55~+150	°C
Lead Temperature (soldering, 10sec)			+260	°C

Note :

- The power dissipation values are based on the condition that junction temperature T_J and ambient temperature T_A difference is 100°C.
- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These
 are stress ratings only, and function operation of the device at these or any other conditions beyond those indicated
 under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for
 extended periods may affect device reliability.

Electrical Characteristics

(VIN=5V, TA=25°C, unless otherwise noted.)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VIN	Input Voltage		2.4		7.0	V
N	Output Voltage	Vin = Vout+1.0V, Iout=1mA, Vout≧1.8V	-1% -2%	N	+1% +2%	V
VOUT		$\label{eq:VIN} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-35	VOUI	+35	mV
Імах	Output Current(see note *1)				1.5	А
Ілміт	Current Limit			1.8		А
	Dropout Voltage	Iout= 100mA, Vout>2.4V		30	45	mV
		Iout= 500mA, Vout>2.4V		230	350	mV
VDROP		Iout= 900mA, Vout>2.4V		500	750	mV
		Iout= 1500mA, Vout>2.4V		900	1350	mV
ΔV_{LINE}	Line Regulation	Vout+1.0V \leq VIN \leq 7.0V, Iout=1mA For Fixed Voltage Type		0.2	0.3	%/V
ΔV load	Load Regulation	$V_{IN}=V_{OUT}+1V$, $1mA \leq I_{OUT} \leq 100mA$		0.01	0.02	%/mA
lq	Ground Pin Current	ILOAD=0mA to 1.5A, $V_{IN} = V_{OUT}+1.0V$		40	65	μA
lsc	Short Circuit Current			1.0		А
Psrr	Ripple Rejection	louτ=30mA, F=1KHz, Couτ=10μF		55		dB
θN	Output Noise	Ιουτ=100mA , F=1KHz, Cουτ=10μF		40		$\mu V_{(\text{rms})}$
Tsd	Thermal Shutdown Temperature			155		°C
THYS	Thermal Shutdown Hysteresis			20		°C

Note :

Measured using a double sided board with 1" x 2" square inches of copper area connected to the GND pins for "heat spreading".

EC8815 Function Block Diagram

Detail Description

The EC8815 is a CMOS low-dropout linear regulator. The device provides preset 1.8V, 2.5V and 3.3V output voltages for output current up to 1.5A. As illustrated in function block diagram, it consists of a 0.95V band-gap reference, an error amplifier, a P-channel pass transistor and an internal feedback voltage divider.

The band-gap reference voltage is connected to the error amplifier, which compares this reference with the feedback voltage and amplifies the voltage difference. If the feedback voltage is lower than the reference voltage, the pass-transistor gate is pulled lower, which allows more current to pass to the output pin and increases the output voltage. If the feedback voltage is too high, the pass transistor gate is pulled up to decrease the output voltage.

The output voltage is feed back through an internal resistive divider connected to OUT pin. Additional blocks include an output current limiter, thermal sensor, and shutdown logic.

Internal P-channel Pass Transistor

The EC8815 features a P-channel MOSFET pass transistor. Unlike similar designs using PNP pass transistors, P-channel MOSFET require no base drive, which reduces quiescent current. PNP-bas- ed regulators also waste considerable current in dropout when the pass transistor saturates, and use high base-drive currents under large loads. The EC8815 does not suffer from these problems and consumes only 60µA (Typ.) of current consum-ption under heavy loads as well as in dropout conditions.

Output Voltage Selection

For voltage type of EC8815, the output voltage is preset at an internally trimmed voltage. The first two digits of part number suffix identify the output voltage (see Ordering Information). For example, the EC8815-33 has a preset 3.3V output voltage.

Current Limit

The EC8815 also includes a fold back current limiter. It monitors and controls the pass transis- tor's gate voltage, estimates the output current, and limits the output current within 2.0A (Typ.).

Thermal Overload Protection

Thermal overload protection limits total power dissipation in the EC8815. When the junction temperature exceeds

 $T_J = +155$ °C, a thermal sensor turns off the pass transistor, allowing the IC to cool down. The thermal sensor turns the pass transistor on again after the junction temperature cools down by 20°C, resulting in a pulsed output during continuous thermal overload conditions.

Thermal overload protection is designed to protect the EC8815 in the event of fault conditions. For continuous operation, the absolute maximum oper- ating junction temperature rating of $T_J = +125^{\circ}C$ should not be exceeded.

Operating Region and Power Dissipation

Maximum power dissipation of the EC8815 depends on the thermal resistance of the case and circuit board, the temperature difference between the die junction and ambient air, and the rate of airflow. The power dissipation across the devices is $P = I_{OUT} \times (V_{IN}-V_{OUT})$. The resulting maximum power dissipation is:

$$\boldsymbol{P}_{MAX} = \frac{(\boldsymbol{T}_{J} - \boldsymbol{T}_{A})}{\boldsymbol{\theta}_{JC} + \boldsymbol{\theta}_{CA}} = \frac{(\boldsymbol{T}_{J} - \boldsymbol{T}_{A})}{\boldsymbol{\theta}_{A}}$$

Where (T_J-T_A) is the temperature difference between the EC8815 die junction and the surrounding air, θ_{JC} is the thermal resistance of the package chosen, and θ_{CA} is the thermal resistance through the printed circuit board, copper traces and other materials to the surrounding air. For better heat-sinking, the copper area should be equally shared between the IN, OUT, and GND pins.

Dropout Voltage

A regulator's minimum input-output voltage differential, or dropout voltage, determines the lowest usable supply voltage. In battery-powered systems, this will determine the useful end-of-life battery voltage. The EC8815 use a P-channel MOSFET pass transistor, its dropout voltage is a function of drain-to-source on-resistance $R_{DS(ON)}$ multiplied by the load current. $V_{DROPOUT} = V_{IN} - V_{OUT} = R_{DS(ON)} \times I_{OUT}$

Mechanical Dimensions OUTLINE DRAWING SOT-223

Symbols	Millim	eters	Inches		
Symbols	Min	Max	Min	Max	
А	1.52	1.80	0.061	0.071	
A1	0.02	0.10	0.0008	0.0040	
A2	1.50	1.70	0.059	0.067	
b	0.60	0.80	0.024	0.031	
b1	2.90	3.10	0.114	0.122	
С	0.24	0.32	0.009	0.013	
D	6.30	6.80	0.248	0.268	
E1	3.30	3.70	0.130	0.146	
е	2.30 E	BSC	0.090 BSC		
e1	4.60 E	BSC	0.18	B1 BSC	
E	6.70	7.30	0.264	0.287	
L	0.90 MIN		0.036 MIN		
L2	0.06 BSC		0.0024 BSC		
α	0°	10°	0°	10°	

Mechanical Dimensions OUTLINE DRAWING TO-252

Symbols	Millim	eters	Inches		
Symbols	Min	Max	Min	Max	
A	2.19	2.38	0.086	0.094	
A1	0.89	1.27	0.035	0.050	
A2	0.00	0.13	0.000	0.005	
b	0.51	0.89	0.020	0.035	
С	0.46	0.58	0.018	0.023	
D	5.97	6.22	0.235	0.245	
E	6.35	6.73	0.250	0.265	
E1	5.21	5.46	0.205	0.0215	
е	2.28	BSC	0.090 BSC		
e1	3.96	5.18	0.156	0.204	
F	0.46	0.58	0.018	0.023	
L	1.40	1.78	0.055	0.070	
L1	2.67 (REF.)		0.105 (REF.)		
L2	0.64	1.02	0.025	0.040	
L3	1.52	2.03	0.060	0.080	
L4	0.51 BSC		0.020 BSC		
Н	9.40	10.40	0.370	0.410	
θ	0°	8°	0°	8°	

Mechanical Dimensions OUTLINE DRAWING TO-263

Symbol	Dimensions	In Millimeters	Dimension	is in inches
Symbol	Min	Max	Min	Max
A	4.470	4.670	0.176	0.184
A1	0.000	0.150	0.000	0.006
В	1.170	1.370	0.046	0.054
b	0.710	0.910	0.028	0.036
b1	1.170	1.370	0.046	0.054
С	0.310	0.530	0.012	0.021
c1	1.170	1.370	0.046	0.054
D	10.010	10.310	0.394	0.406
E	8.500	8.900	0.335	0.350
e	2.54	0 TYP	0.100 TYP	
e1	4.980	5.180	0.196	0.204
L	15.050	15.450	0.593	0.608
L1	5.080	5.480	0.200	0.216
L2	2.340	2.740	0.092	0.108
L3	1.300	1.700	0.051	0.067
V	5.60	0 REF	0.220	REF