General Description

The EC3202F is a current mode monolithic buck switching regulator. Operating with an input range of 2.7V-6.0V, the delivers 1A of continuous output current with integrated -Channel and N - Channel MOSFETs. The internal synchronous power switches provide high efficiency. At light loads, the regulator operate in low frequency to maintain high efficiency and low output ripples.

The EC3202F guarantees robustness with hiccup output short-circuit protection, FB shortcircuit protection, input under voltage lockout and hot-plug in, and thermal protection.

The EC3202F is available in 5-pin SOT23-5 package, which provides a compact solution with minimal external components.

Applications

- 5V or 3.3V Point of Load Conversion
- Set Top Boxes
- Telecom/Networking Systems
- Storage Equipment
- GPU/DDR Power Supply

Features

- Wide Input Range 2.7V~6V
- Constant Output Current 1A
- Switching Frequency 1.2MHz
- Peak Efficiency 94%
- Internal Soft-Start
- Input under Voltage Lockout
- Hot-plug in Protection
- Short Circuit Protection(SCP)
- Over Temperature Protection (OTP

Package

• SOT23-5

Typical Application

Functional Pin Description

Pin Number	Pin Name	Function	
1	EN	Enable	
2	GND	Common Ground	
3	SW	Switch Output	
4	VIN	Power Input	
5	FB	Feedback Voltage	

Marking Rule

SOT23-5

① Represents the product name

Symbol	Product Name	
5	EC3202F ◆◆◆◆◆	

② ③Represents the output voltage

Symbol	Describe	Description		
2	Output Current	1	1A	

③ Represents the technological processes change

0-9 , A-Z , 0-9 , A-Z mirror writing , repeated (G , I , J , O , Q , W exception)

Function Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units	
Input Supply Voltage	V _{IN}	-0.3~7	V	
Output Voltage	Vout	-0.3~7	v	
Operating Temperature Range	Topr	-40~+125	°C	
Storage Temperature Range	Tstg	-65~+ 1 50	C	

Electrial Characteristics

VIN=5V ,CIN=10uF ,CL=22uF ,L=2.2uH

(TA=25 ℃	unless	otherwise	stated)
----------	--------	-----------	---------

Parameter	Symbol	Conditions	MIN	TYP	MAX	Units
VIN Under Voltage Lockout Threshold	VIN_UVLO	Vın rising	2.3	2.5	2.7	V
VIN Under Voltage Lockout Hysteresis	VIN_UVLO_HYST	ViN falling	-	250	-	mV
VIN Hot-plug in Protection Threshold	VIN_OVP	VIN rising	5.7	6.3	-	V
VIN Hot-plug in Protection Hysteresis	VIN_OVP_HYST	Vin falling	-	600	-	mV
Shutdown Current	I _{SHDN}	VIN=6.0V, VEN=0	-	0.1	1	uA
Quiescent Current	lα	Ven =5V, Iout =0A, Vfb = Vref *105%	-	40	70	uA
Regulated Feedback Voltage	Vfb	2.7V <vin<6.0v< td=""><td>0.588</td><td>-</td><td>0.612</td><td>V</td></vin<6.0v<>	0.588	-	0.612	V
PFET On Resistance	RDSON_P	VIN =3.6V, Isw=200mA	-	200	-	mΩ
NFET On Resistance	Rdson_N	VIN =3.6V, Isw=200mA	-	100	-	mΩ
PFET Leakage Current	LEAK_P	VIN=6.0V, VEN=0,VSW=0			1	uA
NFET Leakage Current	ILEAK_N	VIN=6.0V, VEN=0,VSW=6.0V			1	uA
PFET Current Limit		-	1.5	2.0	2.4	А
NFET Current Limit	LIM_BOT	-	1.2	1.5	1.8	Α
Switch Frequency	Fsw	IOUT =1A	-	1.2	-	MHz
Minimum On Time	TON_MIN	-	-	100	-	ns
Maximum Duty Cycle	Dмах	-	-	100	-	%
EN Rising Threshold	Ven_th	VEN rising, VFB =0.3V	1.5	-	-	V
EN Falling Threshold	VEN_HYST	VEN falling, VFB =0.3V	-		0.4	V
Thermal Shutdown Threshold	TSHDN	-	-	150	-	°C
Thermal Shutdown Hysteresis	Тнузт	-	-	20	-	°C

Typical Operating Characteristics

(unless otherwise noted , VIN =5V , VOUT=1.8V , L=2.2uH , CIN=10uF , COUT=22uF , TA=25°C)

1、 Steady State Test

3、Shutdown through Enable

4、Light Load Operation

6、Heavy Load Operation

1A、6V、1.5MHz、50uA IQ Synchronous Step-Down Converter

EC3202F

7、Short Circuit Protection

9、Load Transient

11、Efficiency @ Vout=1.2V

8、Short Circuit Protection

VIN = 5.0V,Vout = 1.8V,Iout = short-1.0A

12、Efficiency @ Vout=0.8V

13、Load regulation @ Vout=1.2V

14、Output Voltage Vs Temperature

VIN=VEN=5V, Iout =10mA

15、Quiescent Current Vs. Input Voltage

VIN=2.5V~6V, VEN=2.5V, VFB=1V

E-CMOS

Function Description

- The EC3202F is a COT control, synchronous, step-down regulator. It regulates input voltages from 2.7V~6.0V down to an output voltage as low as 0.6V, and is capable of supplying up to 1A of load current.
- COT

The EC3202F utilizes constant on-time control to regulate the output voltage. The output voltage is measured at the FB pin through a resistive voltage divider and the error is amplified by the internal transconductance error amplifier.

Output of the internal error amplifier is compared with the switch current measured internally to control the output current limit.

• PFM Mode

The EC2302F operates in PFM mode at light load. In PFM mode, switch frequency is continuously controlled in proportion to the load current, i.e. switch frequency decreases when load current drops to boost power efficiency at light load by reducing switch-loss, while switch frequency increases when load current rises, minimizing output voltage ripples.

• Shut-down Mode

The EC2302F operates in shut-down mode when voltage at EN pin is driven below 0.4V. In shutdown mode, the entire regulator is off and the supply current consumed by the drops below 1uA.

• Power Switches

P-channel and N-channel MOSFET switches are integrated on the EC2302F to down convert the input voltage to the regulated output voltage.

Short Circuit Protection When output is shorted to ground, the switching frequency is reduced to prevent the inductor current from increasing beyond PFET current limit. If short circuit condition holds for more than1024 cycles, both PFET and NFET are forced off and can be enabled again after 8ms. This procedure is repeated as long as short circuit condition is not removed.

• FB Short Circuit Protection When FB is shorted to ground and holds for more 16 cycles, NFET will be turned off after inductor current drops to zero, and then both PFET and NFET are latched off. When short circuit condition is removed, it can be recovery.

Hot Plug-in Protection When input voltage is greater than hot plug-in protection threshold, typical 6.3V, it will disable. When input voltage decrease below 6V, it will be enabled again.

Thermal Protection

When the temperature of the EC3202F rises above 150°C, it is forced into thermal shut-down. Only when core temperature drops below 130°C can the regulator becomes active again.

Application Information

• Setting Output Voltage

The output voltage is determined by the resistor divider connected at the FB pin, and the voltage, ratio is :

$$V_{FB} = V_{OUT} \times \frac{R3}{R2 + R3}$$

Where VFB is the feedback voltage and VOUT is the output voltage. Choose R3 around $10K\Omega$, and then R2 can be calculated by:

$$R2 = R3 \times (\frac{V_{OUT}}{0.6V} - 1)$$

The following table lists the recommended values.

VOUT(V)	R2(KΩ)	R3(KΩ)
1.2	100	100
1.8	200	100
2.5	316	100
3.3	499	100

Input Capacitor Selection

The input capacitor is used to supply the AC input current to the step-down converter and maintaining the DC input voltage. The ripple current through the input capacitor can be calculated by:

$$I_{C1} = I_{LOAD} \times \sqrt{\frac{V_{OUT}}{V_{IN}} \left(1 - \frac{V_{OUT}}{V_{IN}}\right)}$$

Where ILOAD is the load current [,] VOUT is the output voltage, VIN is the input voltage. Thus the input capacitor can be calculated by the following equation when the input ripple voltage is determined.

$$C_{1} = \frac{I_{OUT(MAX)}}{\Delta v_{IN} \times f_{S}} \times \frac{V_{OUT}}{V_{IN}} \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Where C1 is the input capacitance \cdot fs is the switching frequency $\cdot \triangle$ VIN is the input ripple current. The input capacitor can be electrolytic, tantalum or ceramic. To minimizing the potential noise, a small X5R or X7R ceramic capacitor, i.e. 0.1uF, should be placed closer than 3mm to the IC as possible when using electrolytic capacitors. A 10uF ceramic capacitor is recommended in typical application.

• Output Capacitor Selection

The output capacitor is required to maintain the DC output voltage, and the capacitance value determines the output ripple voltage. The output voltage ripple can be calculated by:

$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{f_s \times L} \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \left(ESR + \frac{1}{8 \times f_s \times C_2}\right)$$

Where C2 is the output capacitance value and ESR is the equivalent series resistance value of the output capacitor. The output capacitor can be low ESR electrolytic, tantalum or ceramic, which lower ESR capacitors get lower output ripple voltage. The output capacitors also affect the system stability and transient response, and a 22uF ceramic capacitor is recommended in typical application.

Inductor Selection

The inductor is used to supply constant current to the output load, and the value determines the ripple current which affect the efficiency and the output voltage ripple. The ripple current is typically allowed to be 30% of the maximum switch current limit, thus the inductance value can be calculated by:

$$L = \frac{V_{OUT}}{\mathbf{f}_{\mathrm{S}} \times \Delta \mathbf{I}_{\mathrm{L}}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Where VIN is the input voltage, VOUT is the output voltage, fs is the switching frequency $\ \ \triangle$ IL is the peak-to-peak inductor ripple current.

PCB Layout Note

The following advice should be considered when laying out a printed circuit board for the EC3202F

1 • Place the input decoupling capacitor as close to EC3202F (VIN pin and PGND) as possible to eliminate noise at the input pin. The loop area formed by input capacitor and GND is not minimized. IC cannot work well when Vin pin is interfered by noise.

 $2\,\,{\sim}\,$ Put the feedback trace as far away from the inductor and noisy power traces as possible.

3 • The ground plane on the PCB should be as large as possible for better heat dissipation.

Packaging information

• SOT23-5

Sympol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
Z	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
ć	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°