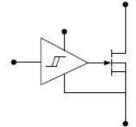
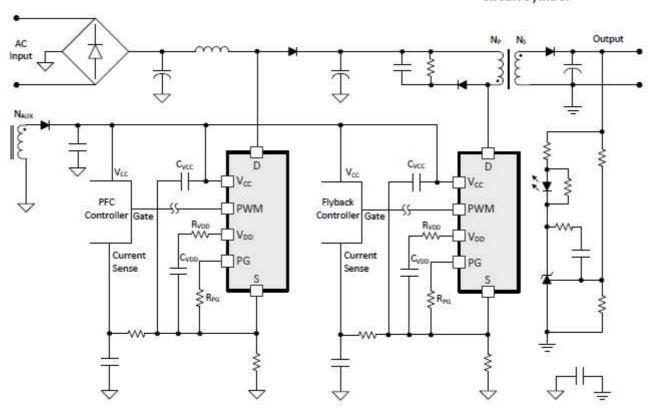


ECK1815CA

Features


- ♦650V E-Mode GaN integrated Gate Driver
- ♦170mΩ RDS ON
- ♦Wide input range with hysteresis
- ◆Wide Vcc range (10V~30V)
- ◆Fast and controllable rise time and fall time
- ◆Zero reverse recovery loss
- ◆Small DFN 5x6 package

DFN 5x6


Applications

- ◆AC-DC Adapter
- **◆**DC-DC Converter
- **♦**LED Lighting
- ◆Power Factor Correction
- ◆Charger

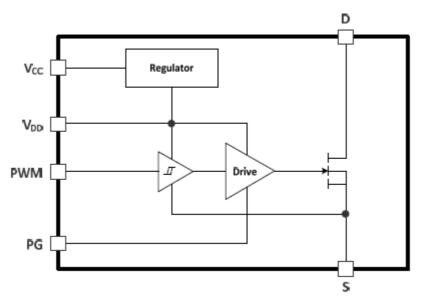


Circuit Symbol

Typical Application Circuit

Marking Information

- (A) Part Number
- (B) Date Code (Year: 2 digits / Weak: 2 digits)
- (C) Internal Code (3 digits)


Pin Configurations

Pin Assignment

Pin No.	Symbol	Description
1	V _{cc}	Supply voltage.
2	PWM	PWM input.
3	V_{DD}	Gate driver supply voltage. Gate driver turn-on current set pin.
4	PG	Power Ground. Gate driver turn-off current set pin.
5/6/7/8	D	Drain of GaN HEMT.
E-PAD	S	Source of GaN HEMT and Gate Driver ground.

Block Diagram

Absolute Maximum Ratings

Symbol	Parameter	Rating
V _{DS_TRAN}	Transient Drain to Source Voltage (Pulse ≤ 1us)	800V
V _{DS}	Continuous Drain to Source Voltage	650V
V _{CC}	Supply Voltage	30V
V _{PWM}	PWM Pin Voltage	-3V to 30V
I _D	Continuous Drain Current @ T _C =100°C	8A
	Pulsed Drain Current (Pulse = 10us) @ T _C =25°C	16A
I _{DP}	Pulsed Drain Current (Pulse = 10us) @ T _C =125°C	12A
dV/dt	Slew Rate on Drain to Source	200V/ns
Tı	Operating Junction Temperature	-55°C to 150°C
T _{STG}	Storage Temperature	-55°C to 150°C

- These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.
- All voltages are with respect to ground.

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{cc}	Supply Voltage	10		24	V
V _{PWM}	PWM input Voltage (Do not exceed V _{CC})	0	5	20	V
T _C	Operating Case Temperature	-40		125	°C

- These are conditions under which the device functions but the specifications might not be guaranteed.
- For guaranteed specifications and test conditions, please see the Electrical Specifications.

Package Information

Symbol	Parameter	Rating	Unit
θ_{JC}	Thermal Resistance (Junction to Case)	2	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)	38	°C/W

• Thermal resistance is measured on FR4 PCB of 1 square inch 2oz Cu.

GaN HEMT integrated Gate Driver

ECK1815CA

Electrical Characteristics

Symbol	20V, F _{SW} =1MHz, R _{TR} =10Ω, T _A =25°C, unles Parameter	Test Condition	Min	Тур	Max	Unit		
V _{cc} Specif	V _{CC} Specifications							
IQ	V _{CC} Quiescent Current	V _{PWM} =0V		0.06	1.5	mA		
I _{cc}	V _{CC} Operating Current	F _{SW} =1MHz, V _{DS} =OPEN		1.1		mA		
V _{DD} Speci	fications							
V_{DD}	V _{DD} Operating Voltage		4.5	5.2	5.9	V		
PWM Log	cic Input Specifications		•					
V_{PWMH}	PWM Input High Threshold				1.4	V		
V_{PWML}	PWM Input Low Threshold		1.1			V		
$V_{\text{PWM_HYS}}$	PWM Input Hysteresis			0.3		V		
T _{ON}	Turn-on Propagation Delay	Fig. 1, 2		3		ns		
T _{OFF}	Turn-off Propagation Delay	Fig. 1, 2		4		ns		
T _R	V _{DS} Rise Time	Fig. 1, 2		7		ns		
T _F	V _{DS} Fall Time	Fig. 1, 2		4		ns		
Switching	s Specifications		•					
F_{SW}	Switching Frequency				2	MHz		
T_PW	Pulse Width		0.02		1000	us		
GaN Spec	GaN Specifications							
	Durin Course Losland Course	V _{PWM} =0V, V _{DS} =650V		2	20	uA		
I _{DSS}	Drain-Source Leakage Current	V _{PWM} =0V, V _{DS} =650V, T _J =150°C		10	120	uA		
D	Drain-Source Resistance	I _D =3A		170	260	mΩ		
R _{DSON}		I _D =3A, T _J =150°C		320		mΩ		
V_{SD}	Source-Drain Reverse Voltage	V _{PWM} =0V, I _{SD} =2A		2.7		V		

GaN HEMT integrated Gate Driver

ECK1815CA

Q _{oss}	Output Charge	V _{PWM} =0V, V _{DS} =400V	19	nC
Q _{RR}	Reverse Recovery Charge		0	nC
C _{OSS}	Output Capacitance	V _{PWM} =0V, V _{DS} =400V	20	pF
C _{O(ER)}	Effective Output Capacitance, Energy Related	V _{PWM} =0V, V _{DS} =0V to 400V	27	pF
C _{O(TR)}	Effective Output Capacitance, Time Related	V _{PWM} =0V, V _{DS} =0V to 400V	43	pF

[•] $C_{O(ER)}$ is the fixed capacitance that would give the same stored energy as C_{OSS} while V_{DS} is rising from 0 V to the stated V_{DS} . $C_{O(TR)}$ is the fixed capacitance that would give the same charging time as C_{OSS} while V_{DS} is rising from 0 V to the stated V_{DS} .

Test Circuits

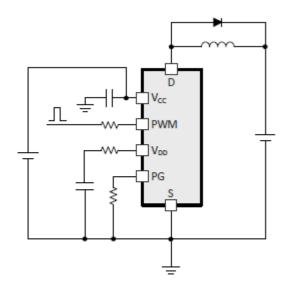


Fig. 1
Inductive switching circuit

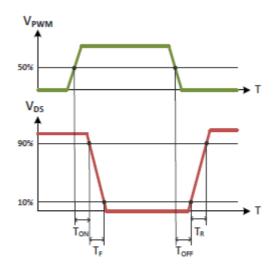
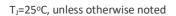
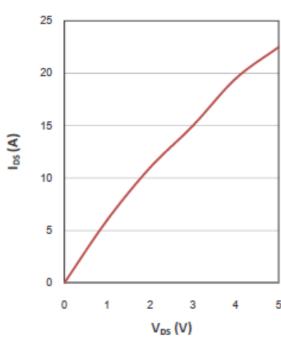
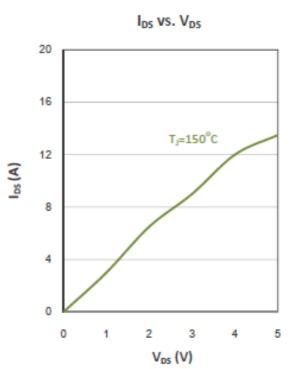



Fig. 2
Propagation delay & rise/fall time definitions

Typical Performance Characteristics

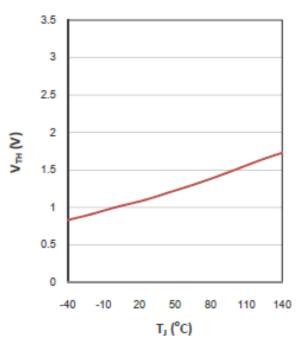
3.5


1


0.5

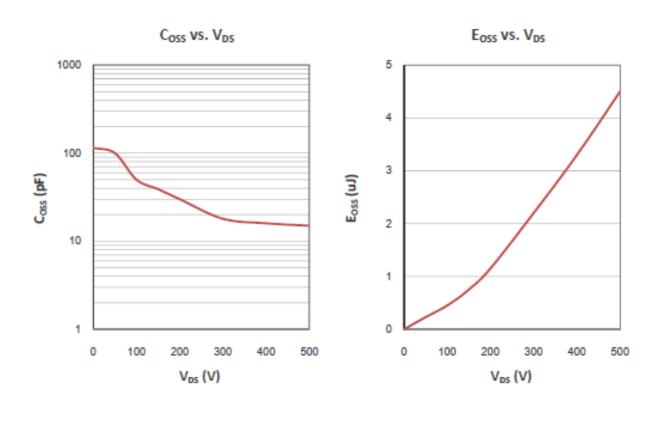
0

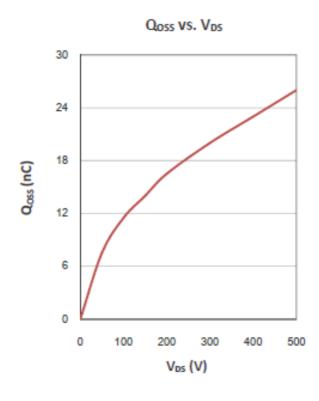
-40

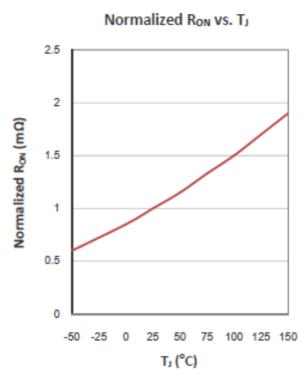


V_{PWMH} vs. Temperature

3 2.5 2 2 1.5

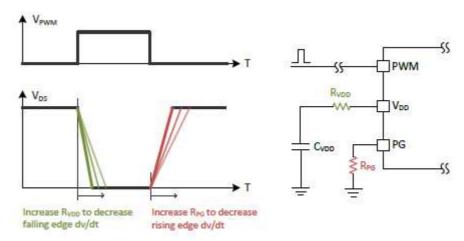



V_{PWML} vs. Temperature



-10

ECK1815CA

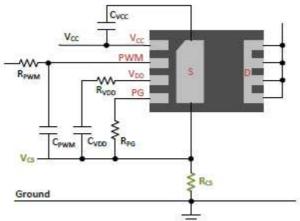

Application Information

Normal Operation

When VCC pin is given a suggestion voltage (10~24V), the internal circuit blocks are active, and the VDD will be set at 5.2V by internal voltage regulator. The internal gate drive detects the PWM signal and according as the PWM voltage level to turn-on/off the GaN HEMT, and the dv/dt slew rate can be set by an external resistor on VDD pin or PG pin. It is useful to optimize the overall efficiency and EMI.

V_{DS} dv/dt Control

Connect an external resistor (R_{VDD}) between V_{DD} pin and C_{VDD} can set the gate driver current that will change the V_{DS} fall time. The V_{DS} rise time can be set by an external resistor (R_{PG}) on PG pin. The following figure shows the V_{DS} dv/dt change with respect to R_{VDD} and R_{PG} .


 R_{VDD} must be used by minimum 10Ω to ensure application and device robustness.

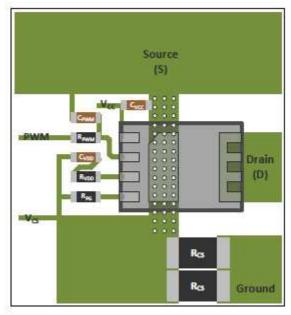
PWM RC Filter

To prevent the false triggering, an external RC filter can be inserted between the PWM signal and PWM pin to inhibit the high frequency spike and noise. The typical value is $100\Omega/100$ pF.

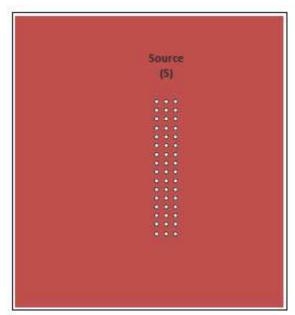
Current Sensing

Many applications need to sense the current flowing through the power device. A typical connection is placing a current sensing resistor between the Source pin (S) and ground. In this configuration, all of the components around this power device should be grounded to the Source pin (S).

Recommended Component Values

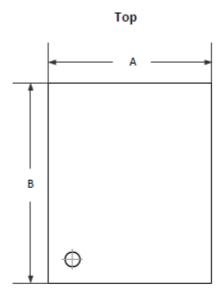

The following table shows the recommended component values for the external C_{VCC} , R_{PWM} , C_{PWM} , R_{VDD} , C_{VDD} , and R_{PG} . These components should be placed as close as possible to the power device. For more layout information, please see the following <u>PCB Layout</u> section.

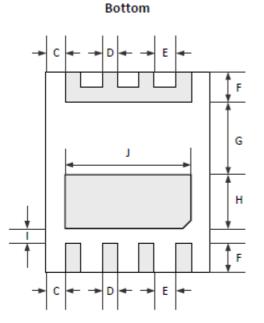
Symbol	Parameter	Min	Тур	Max	Unit
C _{VCC}	V _{CC} capacitor		0.1		uF
C _{VDD}	V _{DD} capacitor		0.01		uF
R _{VDD}	Gate driver turn-on current set resistor	10	25		Ω
R _{PG}	Gate driver turn-off current set resistor		0		Ω
R _{PWM}	PWM filter resistor		100		Ω
C _{PWM}	PWM filter capacitor		100		pF

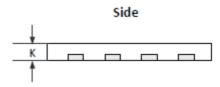

PCB Layout

The design of PCB layout is very important, especially for the switching power supply of high frequency and large peak current. A good layout minimizes EMI on the switching note and current path, and reduces the temperature of power device. The following layout guides can be used to ensure the power device proper operation.

- (1). All of the components around the power device should be placed as close as possible, including C_{VCC} , R_{PWM} , C_{PWM} , R_{VDD} , C_{VDD} , and R_{PG} .
- (2). Place thermal vias in the source pad to conduct the heat out through the bottom of package and throughthe PCB to the other layers.
- (3). For high power density design, use large thermal plane connecting with thermal vias to the source pad and additional PCB layers as much as possible. It is useful to reduce the temperature of power device.


Recommended PCB Layout (Top)




Recommended PCB Layout (Bottom)

Package Information DFN 5x6

Symbol	Dimension (mm)					
Symbol	Min.	Тур.	Max.			
А	4.9	5	5.1			
В	5.9	6	6.1			
С	0.245	0.345	0.445			
D	0.4	0.5	0.6			
E	0.67	0.77	0.87			
F	0.6	0.7	0.8			
G	1.8	1.9	2			
Н	2.1	2.2	2.3			
I	0.4	0.5	0.6			
J	4.2	4.3	4.4			
К	0.75	0.85	0.95			